An Investigation of a Compromised Host on a Honeynet Being Used to Increase the
Security of a Large Enterprise Network

Timothy R. Jackson, John G. Levine, Julian B. Grizzard, Henry L. Owen
whitehat@resnet.gatech.edu, levine@ece.gatech.edu, grizzard@ece.gatech.edu,
henry.owen@ece.gatech.edu
Georgia Institute of Technology; Atlanta, Georgia 30332-0250

Abstract—

The growth of network intrusions on large enterprise net-
works continues to increase, creating an epidemic of com-
promised hosts. The deployment of firewalls and intrusion
detection systems has not slowed the growth of intrusions to
an acceptable rate. Investigating the compromise of a pro-
duction machine is both difficult and time-consuming due
to the mixing of attack and production traffic, while similar
investigations of compromised machines on honeynets are
much less complex since there is no real production traffic.
We discuss why these investigations are easier on a honeynet
and how honeynets may be used to make investigations of
compromised production machines faster and recovery eas-
ier. We include a description of an attack and the analysis
that was conducted.

I. INTRODUCTION

Computer networks today are vulnerable to a variety of
attacks, with recent worms such as Blaster, Nachi, and My-
Doom demonstrating the ability of malicious software to
spread quickly through these networks. There are an esti-
mated 80,000 viruses in existence today, a rapidly growing
number[1]. Thousands of hackers probe and attack com-
puter networks each day. These attacks range from rela-
tively benign ping sweeps (where each computer on a net-
work is asked to respond to a special message) to sophisti-
cated techniques exploiting security vulnerabilities in both
software and hardware. Further complicating matters for
the network administrators charged with defending these
networks, a “relatively benign” ping sweep may be prepa-
ration for a more sophisticated attack[2]. As the amount of
traffic on a network grows, monitoring that traffic and iso-
lating threats from normal or otherwise harmless activity
becomes increasingly difficult. This situation is even worse
for large universities where the need for academic freedom
prevents network administrators from implementing strict
controls on their networks[3].

II. BACKGROUND

To help prevent intrusions, network administrators may
deploy a variety of defenses, including firewalls and Intru-
sion Detection Systems. The functions of these defenses
vary, but they all have the same objective: increase the se-
curity of the network they defend. A recent work proposed
using honeynets to secure large enterprise networks, such as

the network at Georgia Tech[3]. In this paper we discuss
specific examples of how data recovered from honeynets
may be used to increase the security of such networks.

A. Firewalls

One defense network administrators may employ is a fire-
wall, which acts as sieves on traffic passing through it. The
objective is to prevent malicious traffic from reaching the
rest of the network. Very often firewalls are deployed at the
network edges, where they connect to the Internet. The ob-
jective then is to prevent malicious code and hackers on the
Internet from ever reaching the protected network[4].

B. Limitations of Firewalls

Unfortunately for the System Administrator, there are
numerous and ever more ingenious techniques for circum-
venting firewalls[5]. For instance, firewalls do not protect
against the transfer of an email carrying a virus infected
attachment, or they might be fooled by packets that have
been intentionally fragmented, in ways designed to bypass
firewalls. Some networks (i.e. those at large public univer-
sities) cannot have extremely protective firewalls because
of their need to maintain academic openness. Networks
with extremely large amounts of traffic, such as those at
major corporations and universities, may be impractical to
firewall due to the shear volume of traffic.

C. Intrusion Detection Systems

Since firewalls alone are not a complete solution, net-
work administrators also often install an Intrusion Detec-
tion System (IDS). An IDS is similar to a burglar alarm
in that it does not seek to prevent an attack but warns a
network administrator if it detects an attack[6].

D. Limitations of an IDS

While this warning system is useful and an extremely
powerful defensive tool, especially combined with a fire-
wall, it too has shortcomings. Neither a firewall or an IDS
can defend against an attack that bypasses the defense,
such as unauthorized modems or even encrypted tunnels
passing through them. Depending on its placement within
a network, a firewall or IDS may not protect a network

from internal attacks[3]. Yet, the largest shortcoming in-
herent to both firewalls and Intrusion Detection Systems
is their reliance on signatures of known attacks. The rules
and filters used by both firewalls and intrusion detection
systems are based on information gathered from previous
attacks. Any attack sufficiently different from those the
rules are based on will likely bypass both a firewall and an
IDS without raising an alarm (false negatives)[6]. Alterna-
tively, an IDS may report an attack when there is not one
(false positive).

E. Responding to Compromises

Since networks connected to the Internet cannot be de-
fended against all possible avenues of attack, it seems rea-
sonable to assume any vulnerable computer connected to
the Internet has a high probability of being compromised.
If a production machine is compromised, it can take a long
time to identify the method of compromise. If valuable in-
formation such as credit card numbers, customer records,
or trade secrets might have been exposed, the recovery pro-
cess may take even longer as verifying that the machine is
clean is not a simple matter. Ensuring that no rootkit or
trojan (a collection of programs designed to give a hacker
access to a machine without needing an authorized account
and without the System Administrator’s knowledge) has
been left on the system is a time-consuming and uncer-
tain process. Replacement risks missing some or all of the
rootkit, while re-installing the OS does not provide any
clues as to the extent of the compromise; especially about
what other machines may have been compromised[7]. We
believe honeynets may be used to aid the investigation of
and response to a network intrusion.

F. Definition of a Honeynet

A honeynet is a collection of honeypots. A honeypot is
an information system resource whose value lies in unau-
thorized or illicit use of that resource.[8]. The honeypots
are placed behind a firewall in such a manner as to al-
low all traffic to and from the honeynet to be logged (data
capture). The firewall limits the number of outbound con-
nections to keep honeypots from attacking other machines
(data control). This configuration ensures that all traffic to
the honeynet is contained, captured, and controlled. Typ-
ically, hosts similar to those on the rest of the network are
used on the honeynet to make the honeynet indistinguish-
able from the rest of the network.

III. INVESTIGATIONS ON A HONEYNET

When a honeypot is compromised, the nature of the
honeynet facilitates the investigation, a process that is of-
ten difficult on a production machine[9]. The reasons fall
into four main categories: suspicious traffic, logging, non-
production machines, and confirmation of cleaning. We
propose the use of honeynets to bring these advantages to

production machines as well. The potential benefits of this
process include: greatly speeding the investigation of com-
promised hosts, helping establish signatures for possible
future attacks, enabling the development of cleaning pro-
cedures for compromised hosts, allowing easier cleaning of
hosts compromised in the same way, and better assurance
that formerly compromised hosts are now clean.

A. Suspicious Traffic

Since a honeynet is not made up of actual production ma-
chines, there should theoretically be no traffic to or from
the honeynet. All traffic in the logs is suspicious and of-
ten much less in volume than similar logs from production
machines. This makes finding important data in the logs
much easier. It also means that any host on the network be-
ing monitored that attempts to connect to the honeynet is
likely compromised. By identifying these hosts, the System
Administrator can increase the security of the network.

B. Logs

Every packet to and from the honeynet is logged, giv-
ing the system administrator valuable information about
an attack that is normally targeted against a production
machine. This information includes: the exploit used, com-
mands run on the system, and files the attacker downloaded
onto the host, and may be recovered even if the actual at-
tack traffic was encrypted. Having these files allows a Sys-
tem Administrator to examine them and even install them
on other machines for further analysis.

From the logs, one may learn about who or what the at-
tacker was, which exploit was used, what the compromised
host did in response, and what if anything the attacker
did after compromising the machine. Once the offending
IP address has been identified, it is possible to search the
honeynet logs for all instances of that IP. This may help
determine if this incident is part of a series of attacks or
just an isolated attack of opportunity. System Administra-
tors may also wish to correlate the honeynet logs with the
results of other defenses (e.g. Intrusion Detection Systems
and security scanners) as is currently done at Georgia Tech
to evaluate the effectiveness of these defenses. The logs
may be used to ascertain, with a high degree of probabil-
ity, whether the attacker is a human, a script, or a worm.

This determination is made mostly through an analysis
of the attack’s timing. First, one considers how many other
hosts were trying this same attack. With the infection
rate worms achieve, almost any worm that compromises
a honeynet will also be on other machines that will attack
the rest of the honeynet immediately, while humans tend to
explore a compromised machine before moving on to other
hosts. If many hosts try the same attack in a short period
of time, the attack is likely coming from a worm. If the
attack is coming from only a small number of hosts, one
may perform a packet time-stamp analysis on the attack

traffic. A script will typically be able to scan all the hosts
in a class C subnet in a matter of seconds. A human will
take much longer. This last measurement is of course not
a perfect metric, but it is a general rule that provides a
starting place for more analysis.

If the machine is compromised, the logs help us even fur-
ther. The behavior of worms, scripts, and humans after the
initial infection is often easily differentiable. Worms will in-
fect, possibly open a back-door, and then begin attempting
to propagate. This propagation traffic will then show up
in the honeynet logs. Scripts will typically infect, set up
a back-door, make a note for their owner that a machine
has been compromised, and move on. This leaves a dis-
tinct lack of propagation traffic in the logs. If a human is
running the process manually, they usually see the compro-
mise, then a back-door is installed (in the form of a remote
shell or GUI program), and then the attacker will begin to
run commands. They will install their rootkits, then typi-
cally either look around for data to take or set up some sort
of server, and then clean up. While a script could do these
things, a packet time-stamp analysis (easily performed us-
ing the logs) will give a good indication of whether or not a
person was typing. In addition, mistakes in commands and
“colorful metaphors” occasionally appear in the command
sequences, indicating a human typing.

The primary benefit of this analysis to production ma-
chines is the isolation of patterns or signatures. Once an
attack is found on the honeynet, a signature for that attack
is known. Signatures of known attacks are essential to the
building of both firewall and IDS rules. If a System Ad-
ministrator can determine the signature of exploit code, it
can be detected or blocked by firewalls, intrusion detection
systems, or other network filters (in the case of email born
viruses, the mail server may filter the virus payload). By
providing reliable data on the attack, the logs also allow
network administrators to better determine which alerts
from their intrusion detection systems are actual attacks
and which are not.

C. Non-production Machines

While production machines need to be available to their
users as much as possible, honeypots have no such require-
ments[10]. The system administrator is free to take the
honeypots offline and conduct analysis for as long as neces-
sary. If they are available, other machines may even be put
up on the honeynet to replace the compromised host. Al-
ternatively, the compromised host may have its hard drive
copied onto another machine, for distribution and analysis,
while the host is left online to study any further activity
by the attacker[11].

Using the logs, one is able to determine exactly how a
host was infected, what software was downloaded to it, and
what commands it was instructed to run. This gives us a
much better understanding of any rootkits that may have

been installed. In fact, one has the actual binary or source
code as it was sent to the host, which may be reconstructed
to build a working copy of any files that were sent. Since
these are non-production machines, one does not mind too
much if an attempted cleaning causes a catastrophic failure
of the system and forces a reinstall of the operating system.
The system administrator is free to experiment with the
system to find out how to clean it. With the logs as a guide,
one may even reinfect a system multiple times to perfect
the cleaning process. The System Administrator is also
free to experiment with the composition of the honeynet
and may place machines of interest on the honeynet.
Once cleaning procedures and patterns of behaviors have
been established for hosts compromised in a specific way,
System Administrators are able to use them to diagnose
and clean similarly compromised production machines.
This is very similar to the system used by anti-virus com-
panies. They study a virus on their own machines, and
then release information on how to identify and remove
that virus. The same process works for rootkits and other
software and is currently the subject of much research[3].

D. FEnsuring Machines are Clean

Once a honeypot is cleaned, it may be returned to the
honeynet. If the system was not cleaned properly, the fire-
wall prevents the host from doing much damage (data con-
trol) while the logs reveal any activity resulting from the
continued compromise (data capture). The primary benefit
to production machines relies on the principle that any host
on the protected network that sends traffic to the honeynet
is probably compromised. (This is a slight oversimplifica-
tion as some hosts on a network, such as DNS servers, may
have legitimate reasons for sending traffic to the honeynet.
This traffic however is very small and easily identified by
the System Administrator.) Thus, if a supposedly cleaned
production machine begins sending traffic to the honeynet,
particularly malicious traffic, the System Administrator is
immediately aware that the production machine is either
still compromised or has been re-compromised.

To further enhance this process, we speculate that it
would be possible to implement a virtual honeynet using a
virtual local area network (VLAN) such that hosts could
be dynamically added or removed from this network. The
use of such a VLAN would allow any compromised host to
be instantly placed inside the virtual honeynet, thus gain-
ing most of the advantages inherent to honeynet machines,
without greatly affecting the usability of the host.

IV. RESULTS

At the Georgia Institute of Technology, we have been
using many of these techniques for over a year. The Geor-
gia Tech network has some 33,000 hosts, and is constantly
scanned using a variety of security auditing tools. Data
from our honeynet helps to identify compromised hosts

throughout the Georgia Tech network. In many cases we
are able to identify compromised hosts before other secu-
rity scans, sometimes within minutes of the attack. To
demonstrate our techniques, we include an analysis of an
attack in the fall of 2003[12].

On November 1, 2003, a Microsoft Windows 2000 Pro
machine on the Georgia Tech honeynet was compromised
by an attacker. The attack originated from a Georgia Tech
student’s computer. However, analysis of the data seems
to indicate that this host was only a relay for the attack
and not the attacker’s actual machine.

The attack first appeared as a standard Nachi attack,
but after an initial attempt to compromise the machine re-
vealed to the attacker that the machine had already been
infected, he or she switched tactics and used an MSBlaster
style exploit to open port 4444 with Administrator privi-
leges, thus indicating by the sophistication and timing that
this was a live attacker not an automated program. He or
she then began setting up a rootkit on the machine.

Microsoft Windows 2000 [Version 5.00.2195].
(C) Copyright 1985-1999 Microsoft Corp...

C:\WINNT\system32>cd setup

echo open [ftp server IP] >> fcs0.txt
echo [username] >> fcsO.txt

echo [password] >> fcsO.txt

echo get c.exe>> fcsO.txt

echo get x.exe >> fcs0.txt

echo bye >> fcs0.txt

ftp -i -s:fcs0.txt

From these logs, we can see the rootkit is made up of two
self-extracting .exe files. This attacker names them c.exe
and x.exe. By obtaining our own copy of these files from the
logs, we are able to extract them ourselves and learn more
about them. The former .exe extracts to a directory named
“svchost” with a subdirectory “service” while the later
extracts to “service” and “spools.” The “svchost” direc-
tory contains WinMngr.EXE, ident.bat, one.exe, svc.bat,
win.dll, cygwinl.dll, lsass.exe, regsvc.exe services.exe, and
svchost.exe. These form the core of the rootkit. The sub-
directory “svchost\service” is used for storage of warez,
but because the attacker does not want disk usage to be
noticed, he or she only places a few files on each compro-
mised machine. The “service” directory created by x.exe
contains mostly duplicate files from the “svchost” direc-
tory (possibly to avoid path issues), but it does have one
important file in thug.bat.

C:\WINNT\system32\Setup>cd svchost
cd svchost

C:\WINNT\system32\Setup\svchost>
C:\WINNT\system32\Setup\svchost>dir
Volume in drive C has no label..
Volume Serial Number is 30A6-BFBE.

Directory of C:\WINNT\system32\Setup\svchost.

11/01/2003 05:57p <DIR> ..

11/01/2003 05:57p <DIR> ...
06/02/2002 11:24p 246,272 cygwini.dll.
10/28/2003 03:01p 44 ident.bat.
11/26/2001 02:38p 4,608 lsass.exe.
10/18/2003 07:57p 48,640 one.exe.
04/06/2003 07:38p 9,665 regsvc.exe.
10/28/2003 03:00p <DIR> service.
08/29/2002 09:13p 32,256 services.exe.
10/11/2003 08:08p 591 svc.bat.
04/06/2003 07:30p 98,892 svchost.exe.
10/28/2003 03:02p 1,666 win.dll.
06/19/2002 01:22p 81,165 WinMngr.EXE.
10 File(s) 523,799 bytes.

3 Dir(s) 3,578,163,200 bytes free.

C:\WINNT\system32\Setup\svchost>
C:\WINNT\system32\Setup\svchost>svc <IRC username>

svc <IRC username>
S3rvic3 RRB yay =) .
ok lemme try
patched and in there .

The Remote Registry Backup service is starting..
The Remote Registry Backup service was started successfully...

S3rvic3 MNK yay =) .
ok lemme try
patched and in there .

The Microsoft Networks service is starting..

The Microsoft Networks service was started successfully...

Again, working from the logs it is easy to see
how our attacker extracts these files and directories to
“C:\WINNT\system32\Setup.” The attacker then moves
into the “svchost” directory and executes sve.bat. This file
is the primary installer of the rootkit. The svc.bat file sets
the user name of the IRC bot in win.dll (which is actually
just a plain text file) and starts both the “Remote Registry
Backup” service and the “Microsoft Networks” service. By
looking at the services control panel under Administrative
Tools, we see that both of these new services are bound
to the attacker’s “svchost\lsass.exe” file. This results in
3 processes called lsass.exe, though only one is legitimate.
The “Remote Registry Backup” service is also bound to
“svchost\ident.bat” which executes WinMngr. EXE, while
“Microsoft Networks” is also tied to “svchost\regsvc.exe.”
The effect of starting all of these files as services is to make
them impossible to kill via the Windows(R) Task Manager.
It is necessary to stop the services these files are attached
to in order to bring them down.

Since we have our own copies of these files, we are able
to find that the next step taken by svc.bat is to hide
the directories created by the zip file. Using the “attrib”
command, the bat file runs: “attrib +S +H spools” (aka
C:\WINNT\system32\Setup\spools) and “attrib +S +H
svchost.” These commands set both the system flag and
the hidden flag on the directories causing Windows to hide
them unless the flags are unset or someone checks “show
hidden files and directories” and unchecks “hide protected
operating system files” in the tools->file options->view

S
P

s
el
S

e e

m 'j e e
e Thiming | 3
' = =] ST ——— [|
T mE
[s =
- o e e &8 A
e erniee q e |
- e == |
ey | 3 [- g |
e rrremmdd THmm g |
= —
e
=g
Fig. 1. Windows Explorer view of system compromise

menu of any Windows Explorer window.

That svc.bat which came from c.exe hides a directory
“spools” that came from x.exe suggests that both files were
created by the same person and intended to work together
as a single rootkit.

The other half of this rootkit, x.exe, provides a number
of utilities useful for hacking, such as wget, netcat, fport,
and fscan. None of these are called directly by the services
that are set up, suggesting the attacker intends to hack
other machines from this one. Given this evidence, and
the sophistication of this attack, as well as the number of
compromised boxes found (some 25 machines on Georgia
Tech’s campus alone, including the attacking host) it seems
likely that the attacking host was being used a relay and
the owner is not our attacker.

The third directory created by our attacker contains
more interesting tools, including one (kill.exe) that is
very useful in purging the system of this rootkit. The
first file of importance is thug.bat. This is where the
“Virtual Guide Numbering” service is created and bound
to “service\lsass.exe” (which gives us a total of 4 pro-
cesses named lsass running) and “services\winampa.exe”
(which the name of the popular media player Winamp’s
background executable). This gives us two more pro-
cesses running that are attached to services and can’t be
killed from the Task Manager. The batch file then hides
the “C:\WINNT\system32\service” directory in the same
manner as the other two and removes x.exe.

At some point in running these various programs,
one of them creates a number of registry keys.

This is the rootkit’s signature and can be found
on any machine infected by an wunaltered version.
The keys are placed in HKEY_USERS—>S-1-5-21-

79052478-1383384898-1202660629-1107 (this number may

T =Y

Sy R e feem ey
] T al fi Ty
B A it} i ind o
1 B4 21 MOLDH - EITEHI [e L = sl
oy el i e
S C— EC s
¥], e el = L
—Linkni gy [ruee tven
B) o é"”
(] Eopirs] bt I :\I-v
-j [T . R b,
8 Comn: j= o
s g = il
(20 A B idkr (L8
11y eegrre 58 i e
e
3 e s
[
4
AP Hrs
o It (rrecies M
CATTE Bt
Zicwiin
ol Cooerym weiyes
] B R
7 LT O I G YT N
£ OmtpsrciLwms .
ST [e
RN T — T B
e Bty | AT 1050 RS LA LT Vevms w oo g 4T

Fig. 2. Registry entry of compromised system

be unique to each install) —>Software—>Microsoft—
>Internet Explorer—>Explorer Bars—>{C4EE31F3-4768-
11D2-BE5C-00A0C9A83DA1} (again possibly unique to
each install)->FilesNamedMRU. Each one registers the
name of a file the attacker installed but not its full path.
Currently, it seems logical to conclude that the programs
themselves both set and read these keys, thus executing all
of the files listed if any one of them is started.

This rootkit does not appear to cause any actual damage
to the attacked system (in fact it patches the system against
future attacks on port 135), but instead sets the machine
up as a warez server via IRC. The bot installed connects
to an IRC server and joins a channel, where it broadcasts
repeatedly the files it has available for download from the
svchost\service directory.

Fortunately, removing this rootkit is not especially diffi-
cult after it is understood. Having completed our analysis,
we found the following steps to be sufficient:

1: Using the Administrative Tools, stop the services that
are infected and set them to manual start.

2: Edit the C:\WINNT\system32\Setup)\svchost\x.pid
file to find the process id (PID) of the IRC daemon.

3: Using the kill.exe found in either “service” or “spools,”
kill the pid using C:\kill.exe <pid>. This stops the IRC
daemon from running. You may also safely kill all WinM-
ngr.EXE, winampa.exe and cmd.exe processes. You may
kill the Isass and svchost processes, but the legitimate ver-
sions of these need to be running and may or may not
restart properly if killed.

4: Delete, or move the directories the attacker created:
C:\WINNT\system32\Setup\spools

C:\WINNT\system32\Setup\service
C:\WINNT\system32\Setup\svchost

5: Using regedit, remove all the keys placed by the at-

tacker.

6: If you have not stopped all the attacker’s processes, or
if you wish to be sure they are all gone, reboot the machine.

7: Upon first booting the machine, ensure that you have
only one copy of Isass.exe running, the registry keys are
gone, and that none of the illegal services started. This
is your indication that the machine is clean. (When we
originally did this, we reinfected the machine in order to
establish that we had found everything, and to learn to
start/stop the ired process.)

From this analysis, we found and reported 25 compro-
mised hosts on Georgia Tech’s network, which were illegally
sharing copyrighted material. In addition, we were able to
provide Georgia Tech’s Office of Information Technology
(the managing authority for Georgia Tech’s network) with
specific instructions for the effective diagnosis and cleaning
of any similarly compromised hosts they might find. We
also have the initial exploit code used, and so could instruct
our firewall or IDS to defend against it.

V. CONCLUSIONS

With the current insecurity of networks on the Internet
and the shortcomings of current tools, honeynets are use-
ful to system administrators. As the above example shows,
honeynets are a powerful instrument for finding compro-
mised hosts and learning how to repair them. System Ad-
ministrators can use honeynets along with more traditional
network defenses (i.e. firewalls and intrusion detection sys-
tems) to help secure their networks. honeynets then are not
just useful to the researcher, but may be used to tangibly
improve the security of large enterprise networks.

REFERENCES

[1] Network Associates Technology, Inc. http://www.nai.com/us/
security/home.asp.

[2] McClure, Scambray, and Kurtz, Hacking Exposed: Network Se-
curity Secrets € Solutions, Fourth Edition. New York, NY:
McGraw-Hill/Osborne, 2003, pp. 36-68.

[3] J. Levine, R. LaBella, H. Owen, D. Contis, and B. Culver, “The
use of honeynets to detect exploited systems across large en-
terprise networks,” in Proceedings of the 2003 IEEE Workshop
on Information Assurance and Security, (United States Military
Academy, West Point, NY), June 2003.

[4] P. Kaufman and Spencier, Network Security Private Communi-
cations in a PUBLIC World. Upper Saddle River, NJ: Prentice
Hall PTR, 2002, pp. 586-593.

[5] McClure, Scambray, and Kurtz, Hacking Exposed: Network Se-
curity Secrets € Solutions, Fourth Edition. New York, NY:
McGraw-Hill/Osborne, 2003, pp. 481-502.

[6] Spitzner, Honeypots: Tracking Hackers. New York, NY:
Addison-Wesley, 2003, pp. 58-64.
[77 The Honeynet Alliance. http://project.honeynet.org/

challenge/results/index.html.

[8] The Honeynet Alliance, “Honeypots Mailing List.”

[9] The Honeynet Project, Know Your Enemy: Revealing the Se-
curity Tools, Tactics, and Motives of the Blackhat Community.
New York, NY: Addison-Wesley, 2002, pp. 75-94.

(10]

(11]

(12]

Spitzner, Homneypots: Tracking Hackers.
Addison-Wesley, 2003, pp. 65-68.

The Honeynet Project, Know Your Enemy: Revealing the Se-
curity Tools, Tactics, and Motives of the Blackhat Community.
New York, NY: Addison-Wesley, 2002, pp. 104-106.

New York, NY:

T. Jackson, “Windows 2000 rootkit analysis.” http:
//users.ece.gatech.edu/ owen/Research/HoneyNet/
Quarterly/Analysis_of_Windows_2000_root-kit.htm, Jan-

uary 2004.

