

John Levine*, Brian Culver**, Henry Owen*,
*School of Electrical and Computer Engineering

**Office of Information Technology
Georgia Institute of Technology

Atlanta, Georgia 30332-0250

 Abstract—Hackers who gain root privilege on a
computer system usually want to maintain this level of
privilege for future exploits. They do not want to have to
go through the steps to regain this level of privilege
because of the effort involved and the increased risk of
being discovered as well as the possibility that the
original exploit used to gain root access gets patched. A
hacker who gains access to a system will install some
method for use at a later time allowing the hacker to
come back onto the system with root privilege. The
hacker accomplishes this by the installation of some type
of software known as a backdoor or a Trojan. One type
of Trojan is known as a rootkit, in which specific system
binaries necessary for the day-to-day operation of the
computer system are modified or replaced by the hacker.
These binaries still maintain their original functionality
while allowing the hacker to maintain the ability to
operate clandestinely on the host system. We propose a
methodology for determining the unique signatures of
common rootkits and how to determine if a compromised
system is infected with a new unknown or modified
previously known rootkit.

Index Terms— Computer crime, hacking, information
assurance, rootkits, signature analysis, Trojan.

I. INTRODUCTION
Computers on today’s Internet are vulnerable to a variety

of exploits that can compromise their intended operations.
Systems can be subject to Denial of Service Attacks that
prevents other computers from connecting to them for their
provided service (e.g. web server) or prevent them from

connecting to other computers on the Internet. They can be
subject to attacks that cause them to cease operations either
temporary or permanently. A hacker may be able to
compromise a system and gain root access, i.e. the ability to
control that system as if the hacker was the system
administrator. A hacker who gains root access on a
computer system may want to maintain that access for the
foreseeable future. One way for the hacker to do this is by
the use of a rootkit. A rootkit enables the hacker to access
the compromised computer system at a later time with root
level privileges. System administrators have a continuing
need for techniques in order to determine if a hacker has
installed a rootkit on their systems.

Techniques currently exist for a system administrator to
monitor the status of systems. Intrusion detection systems
operate at numerous levels throughout the network to detect
malicious activity by hackers. At the system or host level, a
file integrity checker program can be run on the computer
system in question. There are several host based IDS tools
that look at changes to the system files. These programs take
a snapshot of the trusted file system state and use this
snapshot as a basis for future scans. The system
administrator must tune this system so that only relative files
are considered in the snapshot. Two such candidate systems
are TRIPWIRE and AIDE (Advanced Intrusion Detection
Environment) [1]. AIDE is a General Public License (GPL)
program that is available for free on the Internet. This
program operates by creating a database of specified files.
This database contains attributes such as: permissions, inode
number, user, group, file size, creation time (ctime),
modification time (mtime), access time (atime), growing

A Methodology for Detecting New Binary Rootkit Exploits

size and number of links [2]. However, a program like
AIDE does have shortcomings. Rami Lehti, in the AIDE
manual, states ”Unfortunately, Aide can not provide absolute
sureness about changes in files. Like any other system files,
Aide’s binary files and/or database can be altered.”

There is another free program that checks a system for
rootkit detection. This program is known as chkrootkit and
is available at http://www.chkrootkit.org. This program
runs a shell script that checks specific system binaries to
determine if a rootkit has been installed on the system. This
program also checks to see if the network interfaces on the
computer have been set to the promiscuous mode, which is a
common ploy used by hackers in order to capture network
traffic. The program also checks the system logs [3]. The
shell script is signature based, therefore the signature must be
known in order to detect if a rootkit has been installed on a
system. Programs such as chkrootkit may not detect new
rootkits, as well as modifications to existing rootkits.

In this paper we discuss a methodology for determining if
a system has been infected by an existing rootkit or if the
system has been infected with a new or modification to an
existing rootkit. New signatures can be created for these new
or modified rootkits in order to detect them.

II. EXISTING METHODOLOGIES TO DETECT
ROOTKITS

A. What is a RootKit?
A rootkit can be considered as a “Trojan Horse” introduced

into a computer operating system. According to Thimbleby,
Anderson, and Cairns, there are four categories of trojans.
They are: direct masquerades, i.e. pretending to be normal
programs; simple masquerades, i.e. not masquerading as
existing programs but masquerading as possible programs
that are other than what they really are; slip masquerades,
i.e. programs with names approximating existing names; and
environmental masquerades, i.e. already running programs
not easily identified by the user [4]. We are primarily
interested in the first category of Trojans, that of direct
masquerades.

A hacker must already have root level access on a
computer system before he can install a rootkit. Rootkits do
not allow an attacker to gain access to a system. Instead,
they enable the attacker to get back into the system with root
level permissions [5]. Once a hacker has gained root level
access on a system, a trojan program that can masquerade as
an existing system function can then be installed on the
compromised computer system.

Rootkits are a fairly recent phenomenon. Systems used to
have utilities that could be trusted to provide a system
administrator with accurate information. Modern hackers
have developed methods to conceal their activities and
programs to assist in this concealment [6]. Traditional
RootKits alter or replace existing system binary components.
These replaced or modified programs allow backdoor access
to a system as well as the ability to hide the hacker’s

presence on the system [7]. Rootkits are a serious threat to
the security of a networked computer system.

A skilled hacker with programming experience most likely
has the ability to create a rootkit for a Linux type system. It
is very easy to create a rootkit. First you need a sniffer
program. A sniffer program can be fashioned from a
program like tcpdump. This program will be used for
password recording after placing the Ethernet connection in
promiscuous mode. Next you need the source code for the
standard system binaries [8]. A skilled hacker can modify
the source code to include a backdoor and compile a trojan
binary. Even for a hacker without the requisite programming
ability, there exists numerous rootkits targeted for specific
operating systems available on the Internet today.

The vulnerabilities that exist in modern operating systems
as well the proliferation of exploits that allow hackers to gain
root access on networked computer systems provide hackers
with the ability to install rootkits System administrators
need to be aware of the threats that their computers face from
rootkits as well as the ability to recognize if a rootkit has
been installed on their computer system.

B. Running AIDE on a computer system.
We decided that some form of host based intrusion

detection was to be used in our methodology to detect
rootkits. Running a file integrity checker such as
TRIPWIRE or AIDE when a system is initially built in order
to get a file integrity baseline is highly recommended [9].
We chose AIDE over TRIPWIRE for several reasons.
According to the AIDE documentation, AIDE is written as a
replacement and extension for TRIPWIRE. It includes more
features and is not a closed product. It can utilize multiple
integrity checking algorithms and has the ability to output the
database to stdout or a file. The current version of AIDE, as
well as previous versions, is available on the Internet [10].
There is, however, an open source version of TRIPWIRE
available for download. We felt that either program would
suit our methodology accordingly.

We have chosen Linux Red Hat version 6.2 as our
operating system. Red Hat 6.2 is a stable operating system
that has been available for a number of years. We chose a
workstation installation with all available packages installed
on the system. There are known exploits available for Red
Hat version 6.2 that will allow a hacker to gain root access
on an unpatched system. This paper will not address how
such a hacker would gain root access only how a hacker
might keep such access after gaining it.

We set out to install the file integrity checker AIDE. To
install AIDE it is necessary to first install the mhash library.
The mhash library is necessary in order to run the additional
integrity checking algorithms. The mhash library is available
on the Internet [11]. Once installed, it is now possible to
install the AIDE program.

 A customized aide.conf file is necessary in order to tell
the AIDE program what characteristics need to be checked

http://www.chkrootkit.org/

on the specific files you want to fingerprint. Also one must
specify in this file which directories contain the files that will
be tracked for changes. We are only checking for changes
to md5 and sha1 checksums on the system binaries in the
/bin directory because this is where some of the most critical
binary rootkit components are usually installed. It is
significant to note that some other rootkits may install
trojaned binaries into different directories. There are
numerous other file parameters that AIDE can check,
including several different checksums. A listing of the
aide.conf file that we are using is given in Figure 1.

Figure 1 – the aide.conf file

The first time that the AIDE program is run with the –init
switch as indicated in the AIDE manual the file aide.db.new
is created in the directory where the aide.conf is located, in
our case this is the /usr/local/etc directory. This database file
contains the fingerprint of all of the parameters for the files
that were selected in the aide.conf file. This file needs to be
renamed to aide.db so that subsequent executions of the
AIDE program can use it.

The AIDE manual also recommends that the configuration
file (aide.conf), the AIDE binary (aide), and the database file
be maintained in a secure location such as a read-only media.
This is to prevent a hacker from altering any of these files in
order to present false information to the system
administrator.

C. The Georgia Institute of Technology Office of
Information Technology (OIT) Methodology for Detecting
Rootkit Exploits.

The Georgia Institute of Technology, or Georgia Tech is
an engineering and research institutes in the United States
[12]. There are over 15,000 undergraduate and graduate
students enrolled at the university as well as approximately
5,000 staff and faculty. Undergraduate and graduate degrees
are offered in the Colleges of Architecture, Engineering,
Sciences, Computing, Management, and the Ivan Allen
College of Liberal Arts.

The Georgia Tech Office of Information Technology has
the primary mission of providing technology leadership and
support to Georgia Tech students, educators, researchers,

administrators, and staff. OIT consists of seven directorates
including the Information Security Directorate [13].

The Information Security Directorate is responsible for
numerous tasks including: educating the campus community
about security related issues, assessing current policies and
developing new policies, assisting in strengthening technical
measures to protect campus resources, and developing
mechanisms to react to incidents and events that endanger
the Institute's information assets [14]. There are 69 separate
departments at Georgia Tech with between 30,000-35,000
networked computers installed on campus. The campus has
two OC-12’s and one OC-48 connection to the Internet with
an average throughput of 600Mbps. Over four terabytes of
data are processed by Georgia Tech on a daily basis.

Because of the high data throughput as well as the
requirement for academic freedom and the research
requirements of the various departments, the Information
Security Directorate does not run a firewall at the Internet
connection to the campus. However, individual departments
and campus agencies do run firewalls designed to meet their
security requirements.

The Information Security Directorate does at present run
an Intrusion Detection System (IDS) at the campus gateway
in order to monitor possible exploits against campus
computer systems. This monitoring is done out of band and
suspicious traffic is not terminated when detected.
Suspicious activity will undergo a follow-on investigation.

Prior to installing the IDS the Information Security
Directorate would on average investigate 5 possible
compromises a week. The Information Security Directorate
would normally receive reports of these compromises from
concerned computer users. Since installing the IDS, the
Information Security Directorate on average investigates 5
compromises a day.

When a system that may have been compromised is
identified, the administrator responsible for that computer is
notified that the computer system is to be investigated. This
is to prevent the computer from being tampered with which
could result in the investigation being impeded.

The system will be booted with a known good media disk
and the hard drive will be mounted in a read-only manner.
The use of a know good media disk is also recommended by
Chris Kuethe in his paper on detecting hacked systems [15].
A duplicate copy of the hard disk may be produced with a
signature checksum in the event that the hard disk ends up
being used in a criminal investigation. The techniques used
by the Security Directorate personnel at Georgia Tech may
be unique to Georgia Tech. The current state of the art in
Computer Forensics Analysis does not provide a formal
methodology for investigation [16].

The investigation will begin by examining various
directories that a hacker may have manipulated to hide his
exploits on the computer system in question. The log files
will first be examined to see if there are any records of what
was done on the system. It is not uncommon for the log files
to have no record of system modifications or to be deleted
from the system. If the log files are deleted, steps will be

taken to try to retrieve them. Next, previously known
directories where a hacker may choose to hide exploit files
will then be examined. The chkrootkit tool may be run to
check if a rootkit has been installed on the system. If these
checks prove unsuccessful the Security Directorate Personnel
will then conduct a more detailed examination of the system.
For example, on a UNIX or LINUX operating system
commands such as find or locate will be used to try and find
directories that may have been used by the hacker when the
system was exploited.

If such a directory is located then a listing of that directory
will occur to see what files are present in that directory.
The file and strings command will be used on these files to
examine them. The file command will be run in order to try
and determine the file type. The output of the strings
command will be read in order to try and recognize any
suspicious text strings that may indicate what exploit was
done to the computer.

The /proc/ directory will then be checked to see if a
program is running in memory. The pid’s (process id
numbers) will be compared between those listed by the ps
(report process status) command (using the –ef switch) and
those listed in the /proc/ directory. A difference between
these two listings indicates that the ps command was most
likely modified by the hacker to hide the processes that the
hacker has running on the computer. The Information
Security Directorate Personnel uses the /proc/ directory as a
true listing of what is currently running on the system being
investigated. The processes that show up in the /proc/
directory but which are not listed by the ps command will be
examined using the file and strings command.

The strace command may be used to trace system calls for
suspicious programs binaries left on the system by the
hacker. The ldd (print shared library dependencies)
command may also be used to check on shared library
dependencies of the suspicious programs, especially for
those suspect programs that have the same name as known
good system binaries. A difference in library listing is
determined to be a direct indication that hacked version of
system binaries are installed on the system.

A similar methodology is used for other operating systems
in order to determine if the system has been exploited by a
rootkit. We believe it is the case that in general, information
security personnel have no formal methodology to determine
if a computer has been infected with a new unknown or
previously modified known rootkit without conducting an
exhaustive manual investigation of the exploit.

III. A METHODOLOGY TO DETECT NEW ROOTKIT
SIGNATURES

A. Comparison of source code
We utilized lrk4 to test our methodology. The Linux

RootKit IV (lrk4) was released in November of 1998 by
Lord Somer. It includes the usual rootkit components to
include: a sniffer, utilities to edit and erase log files, and
Trojan replacement system utility programs [17]. More

recent versions of the lrk rootkit exist. The source code for
Version 5 is also available on the Internet in addition to lrk4
source code for systems with and without shadow passwords.
There is also a precompiled version of lrk4 that is available
for downloading [18]. The lrk4 code continues to be
modified and improved upon. An update to lrk4 was posted
on the Internet as recently as 11 May 2000 [19].

Although newer versions of the lrk exploit exist (ver 5 &
6) lrk4 is recognized as the most stable version of the lrk
exploit. In order to use the precompiled version of the lrk4
exploit, it is necessary to install the previous version of
several libraries since the compiled version of lrk4 was built
against these earlier libraries [20].

A comparison can be made between the source code files
of the clean and lrk4 version of the login.c file. Lord Somer
had to add to the original login.c program from the Shadow-
Suite in order to allow for Trojan password access and the
disabling of the logging function. A comparison can by
made either manually or by using the diff utility that is
available on the Linux system. The following 2 figures show
the result of this comparison on the two files in question.

Figure 2 – diff output screen 1

 Figure 3 – diff output screen –2

Theses screens show all of the code that was input by Lord
Somer into the login.c source code. Much of the logic
behind this code has already been addressed in a separate
paper. However, it is often the case that the source code for
an exploit is no longer available on the target system.
Therefore it is necessary to find another method to recognize
that a specific rootkit has been installed on a system.

B. Comparison of binary files
We propose a methodology to uniquely identify the

different binary level rootkits. It is necessary to have a
clean copy of each binary file that was replaced by the
rootkit program. The listing of the files that were replaced
would be available as a result of running AIDE on the target
system. Copies of the infected binary files are available on
the target system. For example, on our target Red Hat 6.2
system, the clean login binary exists in the bin_bu directory,
which was created when the operating system was first
installed. The infected login program currently exists in the
/bin directory as indicated by the AIDE program (see figure
3). This methodology to identify unique rootkits is as
follows:
1. Run the strings command on each file in question and

pipe the results into a file for further comparison.
2. As an additional check run the diff command against

these two files for a check to see if the strings contained
in the two files are different. Use the –q switch so that
the output only reflects if the files are different.

3. Run the following command:
 fgrep –v –f login.clean login.infected
 The fgrep command outputs a line-matching pattern.

The -v switch is an invert-matching switch which tells
the fgrep function to only output those lines that do not
match. The –f switch tells the fgrep command to get the
patterns to use for matching in the second file
(login.infected) from the first file (login.clean).

The following screen shows this series of commands being
executed.

Figure 4 – commands to compare login files

This series of commands compares the any strings that
exists in both files and outputs only those existing strings that
are different between the two files. Using the clean login file
as the string source and the infected login file as the target
file will result in the output of those strings that exist in the

hacked version of the login program but do not exist in the
clean login file. The output of this command is displayed in
the following screen with the string ‘root’ highlighted.

Figure 5 – output of fgrep function

There are numerous strings that differ between the clean and
hacked login file. The primary reason for this is that the
hacked login program is based on the Shadow-Suite login.c
code and the clean login program is based on the BSD
login.c code. However, some of these strings are potential
signatures for the chkrootkit program to use to check for the
existence of an infected rootkit program. The fact that we
had the clean login.c code from the Shadow-Suite made it
easy to determine what code, to include what strings, had
been added by Lord Somer. All that is then required is to
check these added strings against the original clean login.c
binary file to ascertain the validity of using these strings as a
signature.

By using our methodology a system administrator could
build a library of files that may contain the test strings that
exist in the system binaries. Even if these files do not
contain any unique strings they can still serve as a unique
signature for a specific rootkit. As various rootkits are
discovered additional unique binary files can be added to the
library. A system administrator that determined that a binary
rootkit had been installed on a system could follow our
methodology to compare the infected system binaries with
the files that exist in the library.

Thus, if an infected binary did not match with the existing
binaries in the library, the system administrator could make
the determination that the system has been infected with a
new or modified rootkit since it does not match any of the
existing signature files.

The text strings that exist in this new or modified rootkit
can be examined for unique strings to identify this new trojan
exploit. This unique string could be used by the chkrootkit
program to identify this specific rootkit exploit. A common
text string could also be sought so that the chkrootkit
program would be able to detect the greatest number of
exploits with the least number of signatures. In either case,
this signature can also be provided to a signature–based IDS
system for detection of this exploit.

C. Modifications made to the chkrootkit program

We initially installed the Lord Somer’s lrk4 rootkit on a
clean Red Hat 6.2 system. We then ran chkrootkit-0.36,
which was the current available version of chkrootkit, against
the system. This version of chkrootkit detected that some of
the binaries had been infected, but it did not detect that the
login binary had been infected. The lrk4 rootkit that we
installed did contain a source login.c program with a trojan
capability as previously discussed in the last section.

Upon analysis, we discovered an error in the logic of the
chkrootkit program. The chkrootkit suite is a script called
chkrootkit that calls a routine called chk_login. This routine
performs signature analysis on the login program by looking
for the appearance of various strings within the binary file.
One of the strings used by the chkrootkit program to detect
infected login programs is the string “root”. The lrk4 login
binary file has 2 instances of the string “root” within it. The
clean login program does not contain any reference to the
string ‘root’. The chk_login routine was written to allow for
the appearance of 2 or less instances of “root” in the login
binary program. We contacted Nelson Murilo, who is one
of the authors of the chkrootkit program, about our
discovery. The chkrootkit code was modified to only allow
for the appearance of the string “root” in the login file for
those specific operating systems that have the string “root”
appear in the clean version of their login files. A new
version of the chkrootkit program, chkrootkit-0.37, was
quickly released that now detects that the lrk4 login file is
infected.

IV. CONCLUSION
System administrators have a continuing need for tools,

techniques and procedures in order to determine if their
computer systems have been compromised. Various tools
exist to help a system administrator make this determination
on a daily basis. We propose a methodology in this paper
for the system administrator to not only be able to determine
a computer system has been infected with a binary level
rootkit, which he can currently accomplish with existing
tools, but also to be able to determine if the rootkit is a
variant of already established exploits or a totally new
exploit.

We examined the current methodology for detecting
rootkit exploits by defining the characteristics of a rootkit.
We addressed the employment of a current tool to detect
rootkits. We also addressed the current methodology used
to detect rootkit exploits utilized at a major public research
university in the Southeastern United States

 The methodology we developed to identify new or
modified rootkit exploits was then outlined. These
techniques will not only assist the system administrator in
identifying new rootkit exploits but may also provide string
signatures for IDS’s and the chkrootkit program to use in the
detection of rootkit exploits.

REFERENCES
[1] S. Northcut, L. Zeltser, S. Winters, K. Kent Fredericks,

R. Ritchey, Inside Network Perimeter Security.
Indianapolis, In: New Riders, 2003, pp. 283-286.

[2] R. Lehti , “ The Aide Manual”, www.cs.tut.fi ~rammer
/aide /manual.html , SEP 2002

[3] N. Murilo, K. Steding-Jones, “chkrootkit V. 0.36”
www.chkrootkit .org/README .

[4] H. Thimbleby, S. Anderson, p. Cairns, “A Framework
for Modeling Trojans and Computer Virus Infections,”
The Computer Journal, vol. 41, no.7 pp. 444-458, 1998.

[5] E. Cole, Hackers Beware, Indianapolis, In: New Riders,
2002, pp. 548-553.

[6] D. Dettrich, (2002, 5 JAN) “Root Kits” and hiding
files/directories/processes after a break-in, [Online].
Available: http://staff.washington.edu/dittrich/misc
/faqs/rootkits.faq

[7] E. Skoudis, Counter Hack, Upper Saddle River , NJ:
Prentice Hall PTR: 2002, pp. 422-430.

[8] O’Brian, D. Recognizing and Recovering from Rootkit
Attacks. Sys Admin 5,11 (Nov 1996), pp. 8-20.

[9] S. Northcutt, J. Novak, Network Intrusion Detection An
Analyst’s Handbook . Indianapolis, New Riders, 2001,
p. 207.

[10] http://www.cs.tut.fi/~rammer/aide.html.
[11] http://mhash.sourceforge.net/
[12] http://www.gatech.edu SEP 2002
[13] http://www.oit..gatech.edu, SEP 2002.
[14] http://security.gatech.edu, SEP 2002
[15] C. Kuethe, “Through the Looking Glass: Finding

Evidence of Your Cracker” The Linux Gazette, issue 36,
Jan 1999, available at: http://www.linuxgazette.com/
issue36/kuenthe.html, SEP 2002 .

[16] R. Di Pietro, L. Mancini, “A Methodology of Computer
Forensics Analysis” presented at the 2002 IEEE
Workshop on Information Assurance, West Point, NY,
17-20 June 2002.

[17] S. Hawkins, “Understanding the Attackers Toolkit” The
SANS Institute Reading Room, January 13, 2001,
available at: http://rr.sans.org/linux/toolkit.php. AUG
2002.

[18] http://packetstormsecurity.org/UNIX/penetration/rootkits, AUG
2002

[19] http://packetstormsecurity.nl/UNIX/penetration/rootkits/lrk-
4.1.tar.gz, SEP 2002

[20] E. Skoudis, The Hack-Counter Hack Training Course,
Upper Saddle River , NJ: Hall PTR: 2002, p 74.

http://www.cs.tut.fi ~rammer /aide /manual.html
http://www.cs.tut.fi ~rammer /aide /manual.html
http://www.chkrootkit .org/README
http://staff.washington.edu/dittrich/misc /faqs/rootkits.faq
http://staff.washington.edu/dittrich/misc /faqs/rootkits.faq
http://www.cs.tut.fi/~rammer/aide.html
http://mhash.sourceforge.net/
http://www.gatech.edu/
http://www.oit..gatech.edu/
http://security.gatech.edu/
http://www.linuxgazette.com/ issue36/kuenthe.html
http://www.linuxgazette.com/ issue36/kuenthe.html
http://rr.sans.org/linux/toolkit.php
http://packetstormsecurity.org/UNIX/penetration/rootkits
http://packetstormsecurity.nl/UNIX/penetration/rootkits/lrk-4.1.tar.gz
http://packetstormsecurity.nl/UNIX/penetration/rootkits/lrk-4.1.tar.gz

	INTRODUCTION
	EXISTING METHODOLOGIES TO DETECT ROOTKITS
	What is a RootKit?
	Running AIDE on a computer system.
	The Georgia Institute of Technology Office of Information Technology (OIT) Methodology for Detecting Rootkit Exploits.

	A methodology to detect new rootkit signatures
	Comparison of source code
	Comparison of binary files
	Modifications made to the chkrootkit program

	Conclusion

