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Abstract

Internet sensor networks, including honeypots and log
analysis centers such as the SANS Internet Storm Cen-
ter, are used as a tool to detect malicious Internet traf-
fic. For maximum effectiveness, such networks publish
public reports without disclosing sensor locations, so that
the Internet community can take steps to counteract the
malicious traffic. Maintaining sensor anonymity is crit-
ical because if the set of sensors is known, a malicious
attacker could avoid the sensors entirely or could over-
whelm the sensors with errant data.

Motivated by the growing use of Internet sensors as a
tool to monitor Internet traffic, we show that networks
that publicly report statistics are vulnerable to intelligent
probing to determine the location of sensors. In particu-
lar, we develop a new “probe response” attack technique
with a number of optimizations for locating the sensors
in currently deployed Internet sensor networks and illus-
trate the technique for a specific case study that shows
how the attack would locate the sensors of the SANS In-
ternet Storm Center using the published data from those
sensors. Simulation results show that the attack can de-
termine the identity of the sensors in this and other sen-
sor networks in less than a week, even under a limited
adversarial model. We detail critical vulnerabilities in
several current anonymization schemes and demonstrate
that we can quickly and efficiently discover the sensors
even in the presence of sophisticated anonymity preserv-
ing methods such as prefix-preserving permutations or
Bloom filters. Finally, we consider the characteristics of
an Internet sensor which make it vulnerable to probe re-
sponse attacks and discuss potential countermeasures.

1 Introduction

The occurrence of widespread Internet attacks has re-
sulted in the creation of systems for monitoring and pro-
ducing statistics related to Internet traffic patterns and
anomalies. Such systems include log collection and anal-
ysis centers [1, 2, 3, 4, 5], collaborative intrusion detec-
tion systems [6, 7], honeypots [8, 9], Internet sinks [10],

and network telescopes [11]. The integrity of these sys-
tems is based upon the critical assumption that the IP ad-
dresses of systems that serve as sensors are secret. If the
set of sensors for a particular network is discovered, the
integrity of the data produced by that network is greatly
diminished, as a malicious adversary can avoid the sen-
sors or skew the statistics by poisoning the sensor’s data.

Distributed Internet sensors aid in the detection of
widespread Internet attacks [12, 13] which might other-
wise be detectable only within the firewall and IDS logs
of an individual organization or through a forensic anal-
ysis of compromised systems. In addition, systems such
as Autograph [14], Honeycomb [15], and EarlyBird [16]
which rely on Internet sensors to capture worm packet
contents for use in the automatic generation of worm sig-
natures would be unable to defend against worms which
avoid their previously mapped monitoring points.

Of primary concern to the security community are In-
ternet sensors that enable collaborative intrusion detec-
tion through a wide area perspective of the Internet. Such
systems are in their infancy, but have been proposed in
systems like DOMINO [6] and have been partially imple-
mented in security log analysis centers like the SANS In-
ternet Storm Center [1]. Other examples include Syman-
tec’s DeepSight [17], myNetWatchman [18], the Uni-
versity of Michigan Internet Motion Sensor [19, 20],
CAIDA [2], and iSink [10]. In most cases, sources
submit logs to a central repository which then produces
statistics and in some cases provides a query interface
to a database. In such systems, the probe attacks de-
veloped in this paper can compromise the anonymity of
those who submit logs to the analysis center and thus en-
able an attacker to avoid detection. Similarly, the probe
attacks developed in this paper can compromise the iden-
tity of systems that are used as honeypots that report sim-
ilar kinds of attack statistics. In this case, the sensor net-
work might still detect malicious activity from worms
that probe randomly [21, 22] or due to backscatter from
spoofed addresses used in denial of service attacks [23],
but many new attacks could be designed to avoid detec-
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Date and Time | Submitter ID | Source IP | Source Port | Dest. IP | Dest. Port

1/04/05 10:32:15 384 | 209.237.231.200 1956 64.15.205.183 132
1/04/05 10:30:41 1328 | 216.187.103.168 4659 169.229.60.105 80
1/04/05 10:30:02 1945 24.177.122.32 3728 | 216.187.103.169 194
1/04/05 10:28:24 879 24.168.152.10 518 | 209.112.228.200 1027

Table 1: Example packet filter log that might be submitted to the ISC.

tion by the sensors.

A variety of methods for maintaining the privacy of
organizations submitting sensor logs to analysis centers
have been proposed or are in use. The simplest method
is to remove potentially sensitive fields (typically those
containing IP addresses of sensor hosts within the orga-
nization) from the logs before they are transmitted to the
analysis center or from the reports produced by the anal-
ysis center before they are published. This widely used
method is sometimes referred to as the black marker ap-
proach. A less drastic method of anonymizing IP ad-
dresses is to truncate them, giving only the subnet or
some other number of upper bits. This approach al-
lows the resulting reports to contain more useful infor-
mation while still not revealing whole addresses. It has
been used in some of the CAIDA logs and in the re-
ports of myNetWatchman. Another practice sometimes
employed is hashing the sensitive data. This approach
allows another person who has hashed the same infor-
mation (e.g., the IP address of a potentially malicious
host) to recognize the match between their anonymized
logs and those of another. A more sophisticated tech-
nique for anonymizing IP addresses is the use of Bloom
filters [24, 25, 7]. The Bloom filters are normally used
to store sets of source IP addresses with the intention
of making it difficult to enumerate the addresses within
that set but easy to perform set membership tests and set
unions. All of these techniques fail to prevent the probe
response attacks discussed in this paper. In fact, each of
these methods of obscuring a field (apart from the black
marker approach, which completely omits it) leaks infor-
mation useful in carrying out the attack.

Several other methods of anonymizing sensor logs
have been proposed. One method is to apply a keyed
hash or MAC to IP addresses. Alternatively, one may ap-
ply a random permutation to the address space (or equiv-
alently, encrypt the IP address fields with a secret key).
In particular, much attention has been given to prefix-
preserving permutations [26, 27, 28], which allow more
meaningful analysis to be performed on the anonymized
logs. Although these techniques do in fact prevent the
fields to which they are applied from being used to en-
able probe response attacks, the attacks are still possi-
ble if other fields are present. As will be shown in Sec-
tion 6.1, nearly any useful information published by the
analysis center can be used to mount an attack.

The main contributions of this paper include the intro-
duction of a new class of attacks capable of locating In-
ternet sensors that publicly display statistics. This gives

insights into the factors which affect the success of probe
response attacks. We also discuss countermeasures that
protect the integrity of Internet sensors and still allow for
an open approach to data sharing and analysis. Without
public statistics, the benefits of a widely distributed net-
work of sensors are not fully realized as only a small set
of people can utilize the generated statistics.

The remainder of this paper is organized as follows.
We discuss related work in Section 2 and the Internet
Storm Center in Section 3. We give a fully detailed ex-
ample of a probe response attack in Section 4. In Sec-
tion 5, we describe the results of simulations of the ex-
ample attack. In Section 6, we generalize the example
to an entire class of probe response mapping attacks and
discuss their common traits. We discuss potential coun-
termeasures in Section 7 and conclude in Section 8.

2 Related Work

Guidelines for the design of a Cyber Center for Dis-
ease Control, a sophisticated Internet sensor network
and analysis center, have been previously proposed [29].
Staniford et al. mention that the set of sensors must be
either widespread or secret in order to prevent attackers
from avoiding them entirely. They assess the openness
with which a Cyber CDC should operate and conclude
that such such a system should only make subsets of in-
formation publicly available. Their contribution includes
a qualitative analysis of trade-offs but not a quantitative
analysis of the nature of the threat. In this paper, we
develop an algorithm that serves to delineate the precise
factors that need to be considered when designing Inter-
net analysis centers for security and privacy. In addi-
tion, we investigate how quickly the algorithm can deter-
mine sensor identities through a case study on the Inter-
net Storm Center, as well as for more general locations
of the sensor nodes. Lincoln et al. [30] prototype a pri-
vacy preserving system with live sensors and analyze the
system’s performance, but do not analyze mapping at-
tacks or defenses. Gross et al. [25] describe a system
which uses Bloom filters to preserve the privacy of the
sensors. In Section 7.1 we describe how probe response
techniques could efficiently subvert Bloom filters.
Inadequacies have been previously pointed out in
the measures taken to ensure the privacy of organiza-
tions that send their logs to such analysis centers [31].
However, previous work has focused on attacks on
anonymization schemes that are only possible if the at-
tacker is capable of interacting with the network sensors.
As the location of the network sensors is kept secret, it
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Port Reports | Sources | Targets
325 99321 65722 39
1025 269526 51710 47358
139 875993 42595 | 180544
3026 395320 35683 40808
135 | 3530330 | 155705 | 270303
225 | 8657692 | 366825 | 268953
5000 202542 36207 37689
6346 | 2523129 | 271789 2558

Table 2: Example excerpt from an ISC port report.

is not possible to carry out such attacks. Little to no at-
tention has been given to the problem of discovering the
location of the sensors. We provide techniques that ac-
complish this. In addition, little attention has been given
to the fact that the identity of the organizations and the
specific addresses they monitor must remain secret to en-
sure the integrity of the statistics produced by the anal-
ysis center, particularly if the statistics are meant to be
employed in stemming malicious behavior. By demon-
strating that it is possible to foil the current methods for
maintaining the secrecy of the sensor locations, we show
the importance of this issue.

For example, Pang and Paxson [32] consider the pos-
sibility of “indirect exposure” allowing attackers to dis-
cover the values of anonymized data fields by consid-
ering other parts of the available information. They do
not, however, consider how or whether one might be
able to map the locations of Internet sensors, a prereq-
uisite to interacting with them. Similarly, Xu et al. [28]
describe a prefix-preserving permutation based method
for anonymizing IP addresses that is provably as secure
as the TCPdpriv scheme [27] and consider the extent to
which additional address mappings may be discovered if
some are already known. They also mention active at-
tacks in passing and point out that defense against these
attacks is tricky. We develop in depth an active map-
ping attack that is effective even on reports that subject
IP addresses to prefix-preserving permutations and fur-
ther discuss countermeasures.

3 Background: the Internet Storm Center

3.1 Overview

The Internet Storm Center of the SANS Institute is one of
the most important existing examples of systems which
collect data from Internet sensors and publish public re-
ports. Furthermore, it is a challenging network to map,
as will be shown in Section 5.5, due to its large number
of sensors with non-contiguous IP addresses. Thus, in
order to demonstrate the possibility of mapping sensors
with probe response attacks in general, we describe and
evaluate the algorithm initially using the ISC and then
generalize the algorithm and simulation results to other
sensor networks. In this way, the ISC serves as a case
study in the feasibility of mapping sensor locations.

The ISC collects firewall and IDS logs from approxi-

mately 2,000 organizations, ranging from individuals to
universities and corporations [33]. This collection takes
place through the ISC’s DShield project [34]. The ISC
analyzes and aggregates this information and automati-
cally publishes several types of reports which can be re-
trieved from the ISC website. These reports are useful for
detecting new worms and blacklisting hosts controlled by
malicious users, among other things. Currently, the logs
submitted through the DShield project are almost en-
tirely packet filter logs listing failed connection attempts.
They are normally submitted to the ISC database auto-
matically by client programs running on the participating
hosts, typically once per hour. The logs submitted are of
the form depicted in Table 1. These logs are used to pro-
duce the reports published by the ISC, including the top
ten destination ports and source IP addresses in the past
day, a “port report” for each destination port, a “subnet
report,” autonomous system reports, and country reports.

3.2 Port Reports

In general, many types of information collected by In-
ternet sensors and published in reports may be used to
conduct probe response attacks, as will be discussed in
Section 6. For our case study using the ISC, we will pri-
marily concern ourselves with the ISC’s port reports, as
these are representative of the type of statistics that other
Internet sensor networks may provide and are general in
nature. A fictional excerpt of a port report is given in
Table 2. A full listing all of the 26 possible destina-
tion ports that had any activity in a particular day may
be obtained from the ISC website. For each port, the
report gives three statistics, the number of (unfortunately
named) “reports,” the number of sources, and the number
of targets. The number of sources is the number of dis-
tinct source IP addresses appearing among the log entries
with the given destination port; similarly, the number of
targets is the number of distinct destination IP addresses.
The number of “reports” is the total number of log en-
tries with that destination port (generally, one for each
packet). Although the port reports are presented by day
and numbers in the port report reflect the totals for that
day, the port reports are updated more frequently than
daily. One may gain the effect of receiving a port re-
port for a more fine-grained time interval by periodically
requesting the port report for the current day and sub-
tracting off the values last seen in its fields.

4 Example Attack

We now present a detailed algorithm which uses a
straightforward divide and conquer strategy along with
some less obvious practical improvements to map the
sensor locations using information found in the ISC port
reports. In Section 6 we outline how the algorithm could
be applied to map the sensors in other networks (includ-
ing Symantec DeepSight and myNetWatchman) using
information in those sensor network reports.

USENIX Association

14th USENIX Security Symposium

195



IP address space

e A N
S, S, S, S,
LT T - - T
packets  packets  packets packets
on port p, on portp, on port p, on port p,

Figure 1: The first stage of the attack.

4.1 Introduction to the Attack

The core idea of the attack is to probe an IP address with
activity that will be reported to the ISC if the addresses
are among those monitored, then check the reports pub-
lished by the network to see if the activity is reported.
If the activity is reported, the host probed is submitting
logs to the ISC. Since the majority of the reports indi-
cate an attempt to make a TCP connection to a blocked
port (which is assumed to be part of a search for a vul-
nerable service), a single TCP packet will be detected
as malicious activity by the sensor.! To distinguish our
probe from other activity on that port, we need to send
enough packets to significantly increase the activity re-
ported. As it turns out, a number of ports normally have
little activity, so this is not burdensome. This issue will
be further discussed in Section 4.3. This probing proce-
dure is then used for every possible IP address. It is quite
possible to send several TCP/IP packets to every address;
the practical issues relating to such a task are considered
in Section 5.

The simplest way to find all hosts submitting logs to
the ISC is then to send packets to the first IP address,
check the reports to determine if that address is moni-
tored, send packets to the second IP address, check the
reports again, and so on. However, some time must be
allowed between sending the packets and checking the
reports. Participants in the ISC network typically submit
logs every hour, and additional time should be allowed
in case some participants take a little longer, perhaps for
a total wait of two hours. Obviously, at this rate it will
take far too long to check every IP address one by one.

In order for a sensor probing attack to be feasible,
we need to test many addresses at the same time. Two
observations will help us accomplish this. First, the
vast majority of IP addresses either do not correspond
to any host, or correspond to one that is not submitting
logs. With relatively few monitored addresses, there will
necessarily be large gaps of unmonitored address space.
Hence, we may be able to rule out large numbers of ad-
dresses at a time by sending packets to each, then check-
ing if any activity is reported at all. If no activity is
reported, none of the addresses are monitored. Send-
ing packets to blocks of addresses numerically adjacent

is likely to be especially effective, since monitored ad-
dresses are likely to be clustered to some extent, leav-
ing gaps of addresses that may be ruled out. Second,
since malicious activity is reported by port, we can use
different ports to conduct a number of tests simultane-
ously. These considerations led the authors to the method
described in the following section. It is worth noting
that the problem solved by this algorithm is very similar
to the problems of group blood testing [35]. However,
much of theoretical results from this area focus on op-
timizing the solutions in a different way than we would
like to and thus are not directly applicable to this prob-
lem.

4.2 Basic Probe Response Algorithm
First Stage

We begin with 0,1, 2, ...232 — 1 as our (ordered) list of
IP addresses to check. As a preprocessing step, we fil-
ter out all invalid, unroutable, or “bogon” addresses [36].
Approximately 2.1 billion addresses remain in the list.
Suppose n ports p1, p2, . . . pn, can be used in conducting
probes. To simplify the description of the basic algo-
rithm, we assume in this section that these ports do not
have any other attack activity; we relax this restriction
in Section 4.3. In the first stage of the attack, we di-
vide the list of addresses into n intervals, S1, Sa, ... S,.
Fori € {1,...n}, we send a SYN packet? on port p; to
each address in S;, as depicted in Figure 1. We then wait
two hours and retrieve a port report for each of the ports.
Note that we now know the number of monitored ad-
dresses in each of the intervals, since the reports tell not
only whether activity occurred, but also give the number
of targets. All intervals lacking any activity may be dis-
carded; the remaining intervals are passed to the second
stage of the attack along with the number of monitored
addresses in each.

Second Stage

The second stage of the attack repeats until the attack is
complete. In each iteration, we take the k intervals that
currently remain, call them R;, ... Ry, and distribute our
n ports among them, assigning 7 to each.? Then for each
i € {1,...k}, we do the following. Divide R; into % +1
subintervals, as shown in Figure 2. We send a packet
on the first port assigned to this interval to each address
in the first subinterval, a packet on the second port to
each address in the second subinterval, and so on, finally
sending a packet on the last port to each address in the
%th subinterval, which is the next to last. We do not send
anything to the addresses in the last subinterval. We will
instead deduce the number of monitored addresses in that
subinterval from the number of monitored addresses in
the other subintervals. After this process is completed
for each of the subintervals of each of the remaining in-
tervals, we wait two hours and retrieve a report. Now we
are given the number of monitored addresses in each of
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Figure 2: Subdividing an interval R; within the
second stage of the attack.

the subintervals except the last in each interval. We then
determine the number in the last subinterval of each in-
terval by subtracting the number found in the other subin-
tervals from the total known to be in that interval. At this
point, empty subintervals may again be discarded. Ad-
ditionally, subintervals with a number of monitored ad-
dresses equal to the number of address in the subinterval
may be discarded after adding their addresses to a list of
monitored addresses found so far. The remaining subin-
tervals, which contain both monitored addresses and un-
monitored addresses, may now be considered our new
set of remaining intervals R}, ... R},, and we repeat the
procedure.

By continuing to subdivide intervals until each is bro-
ken into pieces full of monitored addresses or without
any monitored addresses, we eventually check every IP
address and produce a list of all that are monitored. This
process may be visualized as in Figure 3, which gives an
example of the algorithm being applied to a small num-
ber of addresses. The first row of boxes in the figure
represent the initial list of IP addresses to be checked,
with monitored addresses shaded. Six ports are used to
probe these addresses, giving the numbers of monitored
addresses above the row. Three intervals are ruled out as
being empty, and the other three are passed to the second
stage of the algorithm. The six ports are used in the first
iteration of the second stage to eliminate three subregions
(of two addresses each), and mark one subregion as filled
with monitored addresses. The second iteration of the
second stage of the algorithm terminates, having marked
all addresses as either monitored or unmonitored. One
caveat of the algorithm that did not arise in this example
is that the number of remaining intervals at some stage
may exceed n, the number of available ports. In this case
it is not possible to divide all those intervals into subinter-
vals in one time period, since at least one port is needed
to probe each interval. When this cases arises, we simply
select n of the subintervals to probe, and save the other
subintervals for the next iteration.

4.3 Dealing With Noise

We now turn to a practical problem that must be ad-
dressed if the attack is to function correctly. The problem
is that sources other than the attacker may also be send-
ing packets to monitored addresses with the same desti-

nation ports that the algorithm is using, inflating the num-
ber of targets reported. This can cause the algorithm

to produce both false positives and
false negatives. This background
activity may be considered noise

reports

; 41,357 | <15
that obscures the signal the attacker 51959 | <20
needs to read from the port reports. 56, 305 < o5

For a large number of ports, how-
ever, this noise is typically quite
low, as shown by Table 3. Each
row in the table gives the approx-
imate number of ports that typically have less than the
given number of reports. The numbers were produced
by recording which ports had less than the given num-
ber of reports every day over a period of ten consecutive
days.

A simple technique allows the algorithm to tolerate a
certain amount of noise at the expense of sending more
packets. If there are normally, say, less than five reports
for a given port p, we may use port p to perform probes
in our algorithm by sending five packets whenever we
would have otherwise sent one. Then when reviewing
the published port report, we simply divide the number
of reports by five and round down to the nearest integer
to obtain the actual number of submitting hosts we hit.
We subsequently refer to this practice as using a “report
noise cancellation factor” of five. Thus by sending five
times as many packets, we may ensure that the algorithm
will function correctly if the noise on that port is less than
five reports. Similarly, by using a report noise cancella-
tion factor of ten, we may ensure the algorithm operates
correctly when the noise is less than ten reports. By ex-
amining past port reports, we may determine the least ac-
tive ports and the number of packets necessary to obtain
accurate results when using them to perform probes.

Table 3: Ports with
little activity.

4.4 Improvements

False Positives and Negatives

The attack may potentially be sped up by allowing some
errors to occur. If it is acceptable to the attacker to merely
find some superset of (i.e., a set containing) the set of
hosts submitting their logs to the ISC, they may simply
alter the termination conditions in the algorithm. Rather
than continuing to subdivide intervals until they are de-
termined to consist entirely of either monitored or un-
monitored addresses, the attacker may mark all addresses
in an interval as monitored and discontinue work on the
interval when it is determined to consist of at least, say,
10 percent monitored addresses. In this way, when the
algorithm completes, at most 90 percent of addresses
determined to be monitored are false positives. Even
though that is a large amount of error, the vast majority of
the addresses on the Internet would remain available for
the attacker to attempt to compromise, free from the fear
of being detected by the ISC. Alternatively, if the attacker
is willing to accept some false negatives (i.e., find a sub-
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Figure 3: Illustration of the sensor probing algorithm.

set of the hosts participating in the network), they may
discard an interval if the fraction of the addresses that are
monitored within it is less than a certain threshold, again
speeding up the attack. In Section 5 we provide quantita-
tive results on the speedup provided by these techniques
in the case of mapping the ISC.

Using Multiple Source Addresses

Speed improvements may also be obtained by taking ad-
vantage of the sources field of the port reports. By spoof-
ing source IP addresses while sending out probes, an at-
tacker may encode additional information discernible in
this field. If in the course of probing an interval of ad-
dresses with a single port, the attacker sends multiple
packets to each address from various numbers of source
IP addresses and takes note of the number of sources re-
ported, they may learn something about the distribution
of monitored addresses within the interval in addition to
the number of monitored addresses. The following is a
method for accomplishing this.

Multiple Source Technique Before probing an interval
of addresses on some port, we further divide the interval
into some number of pieces k, hereafter referred to as
the “multiple source factor.” To the addresses in the first
piece, we send packets from a single source. To each of
the addresses in the second piece, we send packets from
two sources. For the third piece, we send packets from
four source addresses to each address. In general, we
send packets from 2°~! source addresses to each address
in the ith piece. Note that we already are sending multi-
ple packets to each address in order to deal with the noise
described in Section 4.3. If 281 is less than or equal
to the report noise cancellation factor, then we can em-
ploy this technique without sending any more packets;
otherwise, more bandwidth is required to send all 2k—1
packets to each address.

When the port report is received, we may determine
whether any of the pieces lacked monitored addresses by
considering the number of sources reported. For exam-
ple, suppose k = 3 (i.e., we divide our interval into three
pieces) and five sources are reported. Then we know that
there are monitored addresses in the first and third in-

tervals, and that there are no monitored addresses in the
second interval. This additional information increases
the efficiency of the probing algorithm by often reducing
the size of the intervals that need to be considered in the
next iteration, at the expense of potentially increasing the
bandwidth usage. Of course, this technique is only use-
ful to a limited degree, due to the exponential increase
in the number of packets necessary to use it more exten-
sively. Depending on the level of noise on the port, using
a multiple source factor of two or three achieves an im-
provement in probing efficiency with little to no increase
in the bandwidth requirements.

Noise In order for this technique to perform accurately,
we must deal with noise appearing in the sources field of
the port reports in addition to the reports field. If even
a single source address other than those spoofed by the
attacker is counted in the reported number of sources,
the attacker will have a completely inaccurate picture of
which pieces are empty. This problem may be solved
in a manner similar to the method for tolerating noise in
the number of reports. Rather than sending sets of pack-
ets with 1,2, 4, ... and 2*~1 different source addresses
to the k pieces, we may use 1m, 2m, 4m, ...and 2¥~'m
sources, where m is a positive integer hereafter referred
to as the “source noise cancellation factor.”” Then the
reported number of sources may be divided by m and
rounded down, ensuring accurate results if the noise in
the number of sources was less than m. For example,
if a particular port normally has less than three sources
reported (when the attacker is not carrying out their at-
tack) and the attacker is dividing each interval into four
pieces, they may send sets of packets with 3,6,12, and
24 sources. If seventeen sources are then reported, they
divide by three and round down to obtain five, the sum
of one and four. The attacker may then conclude that the
second and fourth intervals have no monitored addresses,
and that the first and third intervals do have monitored
addresses.

Egress Filtering There is another practical concern re-
lating to this technique, and that is egress filtering of
IP packets with spoofed sources. The careful attacker
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should be able to avoid running into any problems with
this by selecting source addresses similar to actual ones
that are then likely to be valid addresses within the same
network. Not many such addresses are needed (since this
technique will likely only be employed to a limited de-
gree for the aforementioned reasons of bandwidth), and
it is a simple task to verify whether packets with a given
spoofed address will be filtered before leaving the net-
work. All that is necessary is to send one to an available
machine outside the network and see if it arrives.

5 Simulation of the Attack

In the following section we describe the results of several
simulated probe response attacks on the ISC, assuming
the set of ISC sensor locations as well as various other
possible sets of sensor locations. For each attack, we de-
tail the results including the time required and the num-
ber of packets sent, along with a description of how the
attack progresses under various levels of resources and
with optimizations to our algorithm.

In the first scenario, we determine the exact set of
monitored addresses. While this attack is the most ac-
curate, it is also the most time consuming. Depending
on the intentions of the attacker (see Section 5.6), it may
not be necessary to find the exact set of monitored ad-
dresses. Thus, we also simulate finding a superset and a
subset of the monitored addresses. These scenarios may
be more practically useful since they require less time
and resources.

In each case, we examine the interaction between the
accuracy, time, and resources necessary to undertake our
attack. We demonstrate that the proposed attack is fea-
sible with limited resources and under time constraints,
and discuss the impact on the integrity of the sensor net-
work reports. Since an attacker can obtain an accurate
map of the sensors in less than a week, the integrity of
the sensor network reports is at risk. Section 6 discusses
how to apply the algorithm using reports from other sen-
sor networks, and Section 7 discusses possible counter-
measures that sensor networks can use to improve their
vulnerability to such attacks.

5.1 Adversarial Models
Available Bandwidth

In order to examine a broad range of scenarios, we pro-
vide the results of simulations under three distinct ad-
versarial models, the primary difference between mod-
els being the resources of the attacker. Our first attacker
has 1.544 Mbps of upload bandwidth, equivalent to a T1
line and hereafter will be referred to as the T1 attacker.
Our second attacker has significantly more upload band-
width, 38.4 Mbps, and hereafter will be referred to as
the fractional T3 attacker or, for brevity, the T3 attacker.
Finally, we examine the rate at which an attacker with
384 Mbps of bandwidth could complete our attack. This
adversary will be referred to as the OC6 attacker.

While each attacker is denoted by a specific Internet
connection, our algorithm is not dependent upon a par-
ticular Internet connection or attacker configuration. Our
algorithm can be executed on a distributed collection of
machines or a single machine, with the time required to
complete our attack dependent only on the aggregate up-
load bandwidth. Neither the number of machines nor
their specific configurations are important as long as they
can be coordinated to act in unison. In addition, because
our attack does not require a response to be received from
a probe or any significant amount of state to be main-
tained, we can ignore download bandwidth, network la-
tency, and computing resources.

Botnets

One potential way to acquire the necessary bandwidth
is to use a “botnet,” or collection of compromised ma-
chines acting in unison. The technology required to co-
ordinate such a collection of machines for a probe re-
sponse attack is currently available and is under some
estimations commonly used. The most ubiquitous fam-
ilies of botnet software are reported to be Gaobot, Ran-
dex, and Spybot. The required upload bandwidth for the
T1 attacker could easily be achieved by a dozen cable
modems, a very small botnet. Similarly, the upload band-
width for the fractional T3 attacker and the OC6 attacker
could be achieved by using around 250 and 2,500 cable
modems, respectively. Botnets of these scales are not un-
common [37].

It should be noted that the bandwidth required for the
swift completion of the attack varies widely based upon
the noise cancellation factors and the multiple source fac-
tor. In all of our attack scenarios, we have configured the
parameters of our algorithm to best match the resources
of the attacker, resulting in a near optimal outcome for
each attacker. Since the only factors that affect the time
required for our attack to complete are the upload band-
width and parameters to the algorithm, it is reasonably
easy to find a near optimal set of parameters for any given
bandwidth. In addition, the number of ports that have
sufficiently low noise to be used in our attack can eas-
ily be calculated from past port reports and is found to
remain steady throughout the duration of the attack.

Variation in Performance

Each of our attackers is representative of a class of adver-
saries ranging from the most basic attacker with a dozen
machines to a sophisticated and resourceful group with
thousands of machines at their command. Using these
classes of attackers, we show the tradeoffs between ac-
curacy, time, and resources while providing concrete re-
sults including the time required to complete the attack
and the rate at which the attack progresses.

What may not be immediately obvious is the fact that
almost any level of resources is sufficient to map the ad-
dresses monitored by a log collection and analysis center
in a few months. For instance, while not a likely case,
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an attacker equipped only with a DSL line could find the
exact set of addresses monitored by the ISC in under four
months. Log collection projects with fewer participants
than the ISC could be mapped in even less time.

5.2 Finding the Set of Monitored Ad-
dresses

First, we detail the results of our simulation of the fully
accurate attack, which finds the exact set of monitored
addresses. Two useful statistics that will help us to ex-
plain the specifics of an attack are the number of probes
sent and the fraction of monitored addresses known at
a particular time. We explain the significance of each of
these statistics and then use them to highlight similarities
and differences in the simulations under different adver-
sarial models.

Number of Probes Sent

As previously explained in Section 4.2, our attack uti-
lizes repeated probing of IP addresses with SYN packets.
Since we must probe approximately 2.1 billion addresses
with at least one packet each, the number of packets sent
by an attack is significant. While the specifics vary based
on the optimizations used, when finding the exact set of
monitored addresses, our algorithm may send from nine
billion to twenty seven billion SYN packets over a sev-
eral day to several week period. As a result of this hefty
requirement, our three attackers, with their widely differ-
ent upload bandwidths, are able to complete the attack in
widely differing times. For instance, the time required to
find the set of monitored addresses exactly ranges from
around 3 days for the OC6 attacker to approximately 34
days for the T1 attacker. While the time required to com-
plete an attack is not directly proportional to the number
of probes sent, as upload bandwidth increases, the time
required to complete an attack monotonically decreases.
Figure 4 shows the specific number of packets sent per
attacker and the rate at which packets are sent when find-
ing the exact set of monitored addresses. The bend in the
curve represents the point at which the attacker’s band-
width is sufficient to send all the packets required for a
particular two hour interval within the same two hour in-
terval. Before the bend, the attacker’s progress is limited
by the rate at which they can send out packets. This pe-
riod generally corresponds to the first stage of the attack,
that is, the initial probing of the entire non-bogon address
space. The bandwidth used in this stage accounts for the
majority of the total bandwidth used, as large portions of
the address space are ruled out in this first pass. After the
bend, the attacker’s progress is limited by the two hour
wait between sending a set of probes and checking the
corresponding port reports. This situation is generally
the case throughout most of the iterations of the second
stage of the algorithm. For the remainder of our analy-
sis, we will focus on the second statistic, the fraction of
monitored addresses known at a particular time.

packets sent

packets sent

packets sent
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Figure 4: Number of packets sent for each attack
simulation.
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Figure 5: The attacker’s progress in discovering
monitored addresses.

Attack Progress

Figure 5 shows the fraction of monitored addresses that
are known throughout the execution of the attack for each
of our three specific simulations. While in each case the
end result is always the same, the time required and the
rate at which addresses are discovered, a statistic we call
the attack progress, varies widely. One may notice that
the lines in Figure 5 are similar in shape. This is a re-
sult of similarities in the sizes of intervals used in the
algorithm and the particular distribution of monitored ad-
dresses in IP address space. Discussion of this distribu-
tion of addresses appears in Section 5.5. We will con-
tinue to use the attack progress statistic throughout our
analysis as a way to provide insight into the specifics of
our algorithm.

T1 Attacker Analysis

When bandwidth is highly limited as in the case of the
T1 attacker, the number of packets sent in the first stage
of the attack and the first several iterations of the sec-
ond stage are the primary time constraint. As a result, it
makes sense to reduce the number of packets sent by us-
ing ports with less noise and avoiding the use of the mul-
tiple source technique. This in turn allows an attacker to
use a lower report noise cancellation factor, however this
also results in fewer available ports. We have found that
when one doubles the number of ports available for use
by the attacker, they in turn reduce the number of inter-
vals required to complete the attack by a factor of two.
However, this is only beneficial when the attacker is able
to send the number of packets required in each interval.
Since this is not always possible in the case of low band-
width attackers, it makes sense to reduce the number of
packets required and in turn use fewer ports for the at-
tack. Specific details for a near optimal set of parameters
for the T1 attacker and other low bandwidth attackers
follow.

When simulating our algorithm with an upload band-
width equivalent to that of a T1, we determined that a
report noise cancellation factor of two and avoiding the
use of the multiple source technique was one of the best
options. As a result of the T1 attacker’s inability to send
a sufficient amount of packets in the first stage of the
algorithm and the majority of the iterations of the sec-
ond stage, the T1 attack takes significantly more time to
run than the T3 attack or OC6 attack. A T1 line can only
send roughly 28 million SYN packets in a two hour inter-
val, thus the T1 attacker requires several days to run the
first stage of the attack. Similar results follow for most
of the iterations of the second stage of the attack. This
slow progress results in the complete lack of monitored
addresses found within the first 15 days of the attack.
However, after the T1 attacker is able to send the number
of probes required for a particular interval, which hap-
pens around day 27, the remaining 60 percent of moni-
tored addresses are found in only 7 days. In the end, the
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Figure 6: The T1 adversary finding a subset of
the monitored addresses.

T1 attacker requires 33 days and 17 hours and the trans-
mission of approximately 9.5 billion packets to find the
exact set of monitored addresses by the ISC.

T3 Attacker Analysis

As can be seen from Figure 4(b), the T3 attacker is able
to quickly send the number of probes required by the first
stage of the attack and the following iterations of the sec-
ond stage. With a maximum upload throughput of about
626 million SYN packets in a two hour period, the T3
attacker can complete the first stage of the attack in 23
hours. Since the first stage of the attack requires over
8 billion packets, the T3 attacker has already sent the
majority of the 14 billion packets required for the entire
attack and is well ahead of where the T1 attacker was at
the same time.

By the end of the 30th hour, the T3 attacker has already
found about 30 percent of the monitored addresses and
is able to send the number of probes required by all suc-
cessive intervals within the interval itself. Correspond-
ingly, the remaining 65 percent of monitored addresses
are found in the following three days. These results were
achieved with a report noise cancellation factor of two,
a multiple source factor of two, and a source noise can-
cellation factor of two. The time required for the com-
pletion of this simulated attack was 4 days and 16 hours.
This represents greater than a factor of 7 reduction from
the T1 attacker’s 33 days and 17 hours, however this was
obtained with an almost 2,500 percent increase in band-
width.

0C6 Attacker Analysis

While the OC6 attacker has sufficient upload bandwidth
to undertake a faster attack than both other adversaries,
the difference between the time required for the T3 ad-
versary and the OC6 adversary is only a fraction of the
difference between the T1 and T3 adversaries. Even
though the OC6 attacker has 10 times the bandwidth of
the T3 attacker, an increase in the multiple source factor

(the only remaining optimization possible) is not feasi-
ble because of the corresponding exponential increase in
the number of probes required. We determined that a
near optimal set of parameters for the OC6 attacker was
a multiple source factor of two with a source based noise
cancellation factor of four and a report noise cancella-
tion factor of eight. This not only balances the number
of packets required by the multiple source technique with
the number required by the report noise cancellation fac-
tor, but also allows for 25 percent more ports to be used
for the OC6 attack than were used for the T3 attack.

Under these parameters, the OC6 attacker can find
the exact set of monitored addresses to the ISC in 70
hours. If we were to continue considering increasing
bandwidths, we would continue to notice diminishing
marginal returns. This is a result of the fact that the only
remaining optimization possible is the usage of the mul-
tiple source technique, and, as previously stated, this re-
sults in an exponential increase in the number of packets
sent while only reducing the time required to complete
our attack by a few hours.*

5.3 Finding a Superset

By setting a configurable threshold in our algorithm (see
Section 4.4), an attacker is capable of accepting some
number of false positives, while avoiding false negatives.
As aresult, an attacker that is interested in simply avoid-
ing detection may further improve upon the results given
above by finding a superset of the monitored addresses.
We detail the results of such an attack with the T3 adver-
sarial model.

In order to compare with previous results, we use the
same parameters as were used when the T3 adversary
found the exact set of monitored addresses, except in this
case, we specify a maximum percentage of false posi-
tives to allow on a per interval basis. With a maximum
false positive rate of .94 (i.e., the number of possible false
positives over the total number of IP addresses), a re-
port noise cancellation factor of four, a multiple source
factor of two, and a source noise cancellation factor of
two, we are able to reduce the runtime of our attack from
112 hours to 78 hours. However, this reduction in time
requires us to accept around 3.5 million false positives
along with our set of monitored addresses. Allowing
these false positives had little effect on the number of
probes. It was reduced by less than one percent. This
phenomena occurs because the final iterations of the sec-
ond stage of the algorithm require fewer and fewer pack-
ets to probe the small intervals that remain. This fact can
also be seen in Figure 4, where the lines flatten out near
the end of the attack. Although the modest improvement
in time in this case is likely not worth the decrease in ac-
curacy, in other cases of probe response mapping attacks
accepting false positives may be more useful.
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type of | bandwidth data false false | correctly mapped
mapping available sent | positives | negatives addresses time to map
exact OC6 | 1,300GB 0 0 687,340 2 days, 22 hours
exact T3 687GB 0 0 687,340 4 days, 16 hours
exact T1 440GB 0 0 687,340 | 33 days, 17 hours
superset T3 683GB | 3,461,718 0 687,340 3 days, 6 hours
subset T1 206GB 0 182,705 504,635 | 15 days, 18 hours

Table 4: Time to map sensor locations. (ISC sensor distribution)

5.4 Finding a Subset

Having examined the cases of finding an exact set and
finding a superset, we now examine a situation where an
attacker may be interested in finding a subset of the mon-
itored addresses. While an attacker with a T3 or OC6
may attempt to find the exact set of monitored addresses,
an impatient attacker or an attacker with less resources,
such as the T1 attacker, may be content with finding a
subset of the monitored addresses in a reduced amount
of time. By allowing false negatives, an attacker may re-
duce the time and bandwidth necessary to undertake the
attack, but still discover a large number of monitored IP
addresses. An attacker who is interested in flooding the
monitored addresses with spurious activity rather than
avoiding them may be especially interested in allowing
false negatives. In addition to saving time, an attacker
finding a subset may potentially avoid detection of their
attack by sending significantly fewer probes overall.
Since the difference between the time required to find
the exact set of monitored addresses and the time re-
quired to find a subset of monitored addresses is less pro-
nounced at high bandwidths, we only detail the results of
finding a subset with the T1 adversary. Once again we
use the same parameters that were used when the T1 ad-
versary found the exact set of monitored addresses, ex-
cept this time we set the maximum false negative rate
(i.e., the number of possible false negatives over the total
number of IP addresses). With a report noise cancella-
tion factor of two, a single source address, and a max-
imum false negative rate of .001, we are able to reduce
the runtime of our attack from 33 days and 17 hours to
15 days and 18 hours. In addition, we reduce the number
of probes sent from around 9.5 billion to 4.4 billion, a
reduction of over 50 percent. However, these reductions
come at the cost of missing 26 percent of the sensors.
The progress of this scenario is depicted in Figure 6.

5.5 General Sets of Monitored Addresses

The preceding scenarios (summarized in Table 4)
demonstrate that a probe response attack is practical for
mapping the IP addresses monitored by the ISC. They
do not, however, reveal how dependent the running time
of the attack is on this particular set of addresses. A
key factor that determines the difficulty of mapping the
addresses of a sensor network is the extent to which
the sensors are clustered together in the space of IP ad-

dresses. As mentioned in Section 4.1, the more the ad-
dresses are clustered together, the more quickly they may
be mapped. This fact is easily seen in Figure 3.

To determine how well the algorithm works more
generally against various possible sets of sensor IP ad-
dresses, we generated random sets of IP addresses based
on a model of the clustering. More specifically, the sizes
of “clusters,” or sets of sequential sensor addresses, were
drawn from a Pareto distribution,’ and the sizes of the
gaps in address space between them were drawn from an
exponential distribution. With the parameters of the two
distributions set to fit the actual addresses of the ISC,
the times to map various random sets of IP addresses
are similar to the times reported in Table 4. By vary-
ing the parameters of the distributions, sets of IP ad-
dresses with various average cluster sizes were produced
while holding the total number of sensors roughly con-
stant at 680,000, the approximate number in the ISC
set. For average cluster sizes of 10 or more, the at-
tack typically takes just over two days to complete under
the T3 attacker model previously described (compared
to the 4 days, 16 hours to complete the attack for the
actual ISC). For smaller average cluster sizes, the run-
ning time increases. Below the average cluster size of
the ISC (~ 1.9), typical running times increase rapidly,
with about eight days (about twice the time to map the
ISC sensors) at average clusters size of about 1.6. Note
that smaller sensor networks are faster to map; the ISC
network is among the most challenging networks to map
due to its large number of sensors with widely scattered
IP addresses.

As an extreme case, a number of simulations were also
run on sets of IP addresses that possessed no special clus-
tering, again using the T3 attacker model. Specifically,
the sets were produced by picking one IP address after
another, always picking each of the remaining ones with
equal probability. This can be considered a worst case
scenario, since any real life sensor network is likely to
display some degree of clustering in its set of addresses.
The attack remained quite feasible in this case, taking
between two to three times as long as in the ISC case
when working on a set of addresses of the same size.
This scenario was tested for sets of IP addresses of vari-
ous sizes. The running time ranged linearly from about 3
days to map 100,000 addresses to about 21 days to map
2,000,000.
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5.6 Summary and Consequences

Perhaps the most interesting results of the simulations
using the addresses monitored by the ISC presented in
Table 4 are the cases of discovering the exact set of mon-
itored addresses in about a month with low bandwidth
and in about three days with high bandwidth. The conse-
quences of a malicious user successfully mapping a set of
sensors are severe. Armed with a list of the IP addresses
monitored by a log collection and analysis center, an at-
tacker could avoid the monitored addresses in any future
suspicious activities (such as port scanning). It would
even be possible to include the list in any worms they re-
leased,® allowing the worms to avoid scanning any mon-
itored addresses as they spread. Such attacks would go
undetected (at least by the analysis center in question).
Since organizations such as the ISC are often the first
to discover the spread of new worms, a worm avoiding
the addresses they monitor may go undetected for a long
time. Another technique an attacker armed with a list of
monitored addresses might employ is to flood monitored
addresses with activity, causing valid alerts to be lost in
the noise.

The most important thing to realize when consider-
ing the consequences of an adversary having obtained
a list of monitored addresses is that the damage done
to the distributed monitoring effort is essentially perma-
nent. If the list were publicly released, future alerts aris-
ing from those monitored addresses could not be consid-
ered an accurate picture of the malicious activities occur-
ring within the Internet. Since organizations cannot eas-
ily change the IP addresses available to them, and since
distributed monitoring projects cannot arbitrarily select
who will participate, accumulating a new set of secretly
monitored IP addresses could be an extremely time con-
suming task.

6 Generalizing the Attack

We return now to the fact that our example algorithm for
mapping a set of sensors is highly tailored to our exam-
ple, the ISC, and its port reports. It is certainly conceiv-
able that some change may be made to the way this in-
formation is reported that will confound the algorithm as
it is given. But given such a change, how may we be
sure that all attacks similar to the one given may be pre-
vented? To address this problem, we need to understand
what essentially allows the example attack to work.

6.1 Covert Channels in Reports

By sending probes with different destination ports to dif-
ferent IP addresses and considering which ports have ac-
tivity reported, the attacker is able to gain some informa-
tion about the set of IP addresses that could have possibly
received the probes. In this way, the destination port ap-
pearing in a packet sent out and later in the port reports is
used by the attacker as a covert channel [38] in a message
to themselves. The covert channel stores partial informa-

tion about the IP address to which the probe was directed.
Similarly, (and here we are considering the “probe” to
be all the packets sent to a particular address in a single
round of the second stage of the algorithm) we see that
the number of packets sent and the number of distinct
source IP addresses they contain are covert channels that
may be used to store additional information.

Viewed in this light, it is clear that many possible fields
of information one may imagine appearing in the reports
published by a sensor analysis center are suitable for use
as covert channels in probe response attacks. Character-
istics of attacks or probes that may be reported include
the following.

e Time / date

Source IP

Source network

Source port

Destination network’

Destination port

Protocol (TCP or UDP)

Packet length

Captured payload data or signature

Our case study attack uses the time a probe was sent out,
its destination port, and its set of source IP addresses as
the covert channels. The possibility of characteristics of
packets being used as a covert channel has been previ-
ously mentioned by Xu, et al. [28].

6.2 Other Internet Sensor Networks

To demonstrate the generality of our algorithm, we out-
line how an attacker could map the Symantec DeepSight
Analyzer and the myNetWatchman sensor network. Ta-
ble 5 summarizes the essential mapping information for
Symantec DeepSight, myNetWatchman, ISC, and the
modeled ISC distribution.

Symantec DeepSight

Besides the SANS Internet Storm Center, the largest In-
ternet sensor network that publicly displays statistics is
Symantec’s DeepSight network. Designed much like
the ISC, DeepSight provides a sensor client called the
DeepSight Extractor which, once installed, forwards fire-
wall and IDS logs from a monitored address to a central
log analysis center named the DeepSight Analyzer. The
DeepSight Analyzer then produces summaries and statis-
tics related to the specific security events seen by the par-
ticular client. After installing the client software, a par-
ticular client can log into the DeepSight system and view
statistics concerning the attacks seen in their own logs.
This differentiates the reports of the DeepSight system
from those of the ISC since the DeepSight system does
not provide a global report of the activity sensed by all
clients, but rather primarily a view of the events seen by
a specific client.
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Despite the fact that DeepSight primarily provides in-
formation concerning security events seen in a particular
client’s logs, they are still vulnerable to a probe response
attack. In order to see how an attacker would map the
DeepSight network, we first need to analyze the output
provided by DeepSight. DeepSight provides each client
with a detailed report of the attacks seen in their logs
including the time and date, source IP address, source
port, destination port, and the number of other clients af-
fected by a particular attack. Each report listed contains
roughly forty-two to seventy-four bits usable to the at-
tacker as a covert channel. There are about ten in the
time field, sixteen in each port field, and zero to thirty-
two in the source address field (depending on whether
the attacker needs to worry about egress filtering when
spoofing source addresses and to what extent if so). With
this information, an attacker could map DeepSight with
a few simple modifications to our algorithm.

First, instead of using strictly the time, destination
port, and set of source IP addresses to encode the des-
tination address as in the ISC example, an attacker could
encode the destination address in the source IP, destina-
tion port, source port, and time fields. Since the source IP
address alone provides sufficient space to encode the des-
tination IP address, encoding information in the source
and destination ports and time field is not strictly neces-
sary but could be useful for noise reduction purposes or
if egress filtering is an issue. Second, for each unique
combination of fields which the attacker uses to encode
the destination address, the attacker will have to submit
a log to DeepSight which contains these specific fields.
This will allow an attacker to view the required response
statistics for that probe in the DeepSight system, most
importantly, the number of other clients that received
the probe. Using these two simple modifications to our
example algorithm, an attacker should be able to en-
code sufficient information in each probe such that the
DeepSight network could be mapped in a single pass of
probes.

myNetWatchman

Another important example of an Internet Sensor net-
work that displays public statistics is myNetWatchman.
The myNetWatchman sensor network groups the events
of the past hour by source IP and lists them in the
“Largest Incidents: Last Hour” report. For each source
IP, this report lists the time, target subnet, source port,
and destination port of the most recent event. The ad-
dresses monitored by myNetWatchman could be discov-
ered in a single pass of probes using this or other avail-
able reports.

6.3 Other Types of Reports

Necessity of Event Counts

It is important to note that it is not even strictly nec-
essary for the reports to include the number of events

network | bandwidth | probes sent | time to map
DeepSight - | 2.1billion | single pass of probes
myNetWatchman - | 2.1 billion | single pass of probes
SANS ISC T3 14 billion 4 days 16 hours
Modeled ISC T3 20 billion 6 days 6 hours

Table 5: Essential mapping results.

matching some criteria, but only their presence or ab-
sence. In terms of the algorithm of the example attack
as given in Section 4.2, it would no longer be possible
to avoid sending probes to the last addresses in each in-
terval. Instead, probes would always have to be sent to
all the subintervals. Also, a different scheme would be
needed to overcome the noise problem described in Sec-
tion 4.3 (probably sending several probes to an interval
and only marking it as containing a submitting address if
the corresponding port consistently reports activity), but
the attack could still be made to work.

Top Lists

One type of report commonly produced by log analysis
centers is the “top list” or “hot list,” essentially a list of
the most common values of a field within the reports.
For example, the “Top 10 Ports” report produced by the
ISC is a list of the most frequently occurring destination
ports among events in the past day. The number of values
listed on the report may be a fixed number (in this case
ten), or it may vary as in the case of reports that list all
values occurring more often than some threshold. Such
top list reports tend to be less useful for conducting probe
response attacks for a couple reasons. Reports with a
fixed length typically report very little total information.
A probe response attack based only on the ISC “Top 10
Ports” report would take far too long to be feasible. Also,
it may be necessary to generate a very large amount of
activity to appear on a top list, also making the attack
infeasible. Nevertheless, other such reports still merit
a critical look to determine if they may be sufficient to
launch a probe response attack. Such reports are likely to
be more dangerous if they may be requested for various
criteria (e.g., top ten ports used in attacks directed at a
particular subnet rather than just top ten ports).

7 Countermeasures
7.1 Current Methods

Several methods are in use or have been proposed for
preventing information published in reports from being
misused.

Hashing and Encryption

One common technique is to hash some or all of the
above fields. However, in general this does not impair
the attack as the attacker (having generated the origi-
nal probes) has a list of the possible preimages, which
allows for an efficient dictionary attack. However, en-
crypting a field with a key not publicly available (or us-
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ing a keyed hash such as HMAC-SHA1) would prevent
the use of that field in a covert channel. Unfortunately,
it would also prevent nearly any use of the information
in that field by those who read the published reports for
legitimate purposes. Prefix-preserving permutations [28]
have been proposed a method for obscuring source IP ad-
dresses while still allowing useful analysis to take place.
Obscuring source [P addresses with encryption (whether
or not it is prefix-preserving) does not, however, prevent
probe response attacks, as any of the other characteristics
listed in Section 6.1 may be used.

Bloom Filters

The Bloom filters popular for storing a set of source IP
addresses [25, 7] suffer from similar problems. In gen-
eral, a Bloom filter storing a set of IP addresses is in fact
safe from dictionary attacks due to the false positive fea-
ture of Bloom filters. Even with a relatively low rate of
false positives, say 0.1 percent, the number of false posi-
tives resulting from checking all non-bogon IP addresses
against the filter is on the order of two million (likely
much more than the number of addresses actually stored
in the filter). However, Bloom filters do not stand up
to the iterations of a probe response attack. As an ex-
ample, suppose some analysis center receives logs from
monitored addresses and at the end of each time interval
publishes a Bloom filter containing the source addresses
observed. Sending probes to all non-bogon addresses
with the destination address encoded in the source ad-
dress, then checking for those addresses in the resulting
Bloom filter would produce on the order of two million
false positives (along with the true positives). Sending
a second set of probes to all positives would reduce the
number of false positives to about two thousand, and af-
ter re-probing those positives, approximately two false
positives would remain. One more round would likely
eliminate all remaining false positives, an accurate set
of monitored addresses having been determined in four
probe response iterations. There are of course the ad-
ditional complications of noise and egress filtering, but
this example illustrates that the number of false positives
decreases exponentially with respect to the number of it-
erations of the probe response attack.

7.2 Information Limiting

Private Reports

The most immediately apparent way to prevent attackers
from mapping the locations of the sensors is to limit the
information published in the reports. The most heavy
handed implementation of this strategy is to eliminate
public reports entirely and only provide reports to per-
sons and organizations that can be trusted to not attempt
to map the sensor locations and not disclose reports to
others. Clearly, such an approach severely limits the util-
ity of the network. Only a select few obtain any benefit
at all from the information collected and the analysis per-

formed on that information.
Top Lists

The strategy of producing no public reports is proba-
bly overly cautious. It is likely possible to publish a
variety of the “top list” style reports described in Sec-
tion 6.3 without disclosing enough information to enable
fast probe response attacks, provided some care is used.
However, such lists do not provide anything approaching
a complete picture of the activity within the Internet. In
particular, publishing only top list style reports allows at-
tackers to ensure their continued secrecy by intentionally
limiting their activity to the extent necessary to stay off
the lists.

Query Limiting

Alternatively, a log analysis center may provide full pub-
lic reports or queries of all kinds, but limit the rate
at which they can be downloaded. This may be ac-
complished by requiring payment for each report down-
loaded. The payment may be monetary, or it may take
a more virtual form. Such virtual payments may be the
computational effort required to solve a puzzle or the hu-
man interaction necessary to answer a CAPTCHA [39].
These transactional networks are similar to those pro-
posed by researchers who are attempting to stem the
flood of spam email. This may be used in conjunction
with providing complete reports free of payment to any
organizations that are completely trusted.

Sampling

Another strategy in limiting the information available to
an attacker attempting to map the sensor locations is to
sample the logs coming into the analysis center before
generating reports from them. For example, the analysis
center may discard every log it receives with probabil-
ity %. Large scale phenomena such as worm outbreaks
and port scanning should remain clearly visible in the re-
ports [10], but a probe response attack would be more
difficult. The probability of a single probe sent by an at-
tacker to a monitored address resulting in a false negative
would be %; to reduce this, the attacker would need to
send multiple probes. If the attacker wished to reduce it
to, say, 1 percent, they would need to send twenty probes.
A twenty-fold increase in bandwidth is substantial, and
a large number of false negatives would still likely result
if the attacker attempted to map a network with hundreds
of thousands of monitored addresses in that manner. Of
course, this technique of sampling the incoming alerts
does reduce the useful information produced by the anal-
ysis center. It has an advantage over the strategy of only
publishing top list style reports, however. In this case
there is no way for an attacker to be certain they will not
appear in a report by limiting their activity. Even small
amounts of malicious activity have a chance of being re-
ported.
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7.3 Other Techniques

Scan Prevention

An additional countermeasure which effectively renders
our current algorithm useless is the widespread adoption
of IPv6. With a search space of 128 bits, IPv6 greatly
reduces the feasibility of TCP/UDP scanning and pre-
vents the first stage of our attack from completing in
a reasonable amount of time. Mechanisms for reduc-
ing the search space required for scanning in IPv6 such
as exploiting dual-stacked networks, compiling address
lists, and mining DNS have been previously addressed
in [40]. While IPv6 is an effective countermeasure, the
widespread adoption of IPv6 is out of the control of a
sensor network and hence is an impractical countermea-
sure.

Delayed Reporting

By waiting to publish public reports for a period of time,
an Internet sensor network can force an attacker to ex-
pend more time and bandwidth in mapping a network. To
undertake a probe response attack in the face of delayed
reporting, an attacker has two primary options: either
wait to receive the responses from the most recent probes
or continue probing using a nonadaptive probe response
algorithm. Nonadaptive probe response algorithms do
not rely on the responses of the previous round’s probes
to select the next intervals to probe, rather they continue
probing and partitioning a likely larger search space than
necessary under the assumption that a report will be pro-
duced at some point in time and that this report will allow
for a much larger search space reduction than a single
round of probe responses would have. However, since
nonadaptive algorithms do not reduce the search space
after each round of probes, they require significantly
more probes to be sent and hence increase the bandwidth
necessary for an attack to complete. We defer a full dis-
cussion of nonadaptive probing to future work. The other
alternative of waiting for reports to be published is likely
only possible if the delay is small. Of course, if a net-
work can be probed in a single round then a waiting time
of one week before publishing reports is not an effec-
tive countermeasure. Hence, delayed reporting should
be used in conjunction with another technique which re-
duces the amount of information leakage. It should also
be noted that the utility of a network designed to pro-
duce near real time notifications of new attacks is greatly
reduced by delayed reporting.

Eliminating Inadvertent Exposure

Our final countermeasure is more of a practical sugges-
tion rather than a general countermeasure. Internet sen-
sor networks and log analysis centers should avoid pub-
lishing information about the specific distribution of ad-
dresses they monitor. A simple example should serve to
highlight the primary types of information that must be
eliminated from log analysis center descriptions. Take

for example a log analysis center that publicly provides
their complete sensor distribution, perhaps monitoring
a single /8. In this case, we can simply probe all /8’s
and wait for a single probe to show up in the statis-
tics reported by the sensor network. The singular fact
that the log analysis center monitors a /8 network pro-
vides us with enough information to reduce the number
of probes sent by our attack from several billion to 256!
Even more complicated distributions like those provided
in [20] should be eliminated as they provide very little
useful information and make the attacker’s job much eas-
ier. It should be noted that systems like honeypots, iSink,
and network telescopes which often monitor contiguous
address space are particularly vulnerable to this sort of
inadvertent exposure.

8 Conclusion

In this paper we developed a general attack technique
called probe response, which is capable of determin-
ing the location of Internet sensors that publicly display
statistics. In addition, through the use of the probe re-
sponse algorithm, we demonstrated critical vulnerabili-
ties in several anonymization and privacy schemes cur-
rently in use in Internet analysis centers. We simulated a
probe response attack on the SANS Internet Storm Cen-
ter, as well as on various distributions of sensor nodes
that could occur in other sensor networks, and were able
to determine the set of monitored addresses within a few
days with limited resources. Finally, we outlined the con-
sequences of a successful mapping of Internet sensors,
alternative reporting schemes, and countermeasures that
defend against the attacks.

Our current mapping algorithm is an adaptive probe
response algorithm as each round depends on the out-
put of the previous round. On-going and future work
includes developing and evaluating a nonadaptive ap-
proach for efficiently mapping Internet sensor networks
that infrequently provide data sets or delay reports. Such
networks include the University of Michigan Internet
Motion Sensor [19, 20], CAIDA [2], and iSink [10]. An-
other issue to be investigated in future work is the effec-
tiveness of proposed countermeasures.
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Notes

The authors verified this by sending a number of packets to exter-
nal hosts submitting to ISC and verifying that the activity appeared in
the port reports as expected.

2We do not bother waiting to complete a TCP handshake, as this is
not necessary for activity to be reported.

3Briefly, we round ?* to the nearest integer, adjusting as necessary
to ensure the total number of ports used is n.

4The minimum time encountered to determine the exact set of ad-
dresses monitored by the ISC was found to be 2 days and 8 hours, but
the bandwidth required makes this case unreasonable.

>The sizes of clusters of sensor addresses in the ISC are fit ex-
tremely well by a power law, motivating the use of the Pareto distri-
bution for cluster sizes in the model.

6 At four bytes per address, a list of 700,000 IP addresses is only
about 2.7MB, and may be compressed to an even smaller size.

7We assume the whole destination IP address is never reported, oth-
erwise the attack is trivial.
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