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Abstract. Worm detection systems have traditionally used global strategies and
focused on scan rates. The noise associated with this approach requires statistical
techniques and large data sets (e.g., ����� monitored machines) to avoid false pos-
itives. Worm detection techniques for smaller local networks have not been fully
explored.
We consider how local networks can provide early detection and compliment
global monitoring strategies. We describe HoneyStat, which uses modified hon-
eypots to generate a highly accurate alert stream with low false positive rates. Un-
like traditional honeypots, HoneyStat nodes are minimal, script-driven and cover
a large IP space.
The HoneyStat nodes generate three classes of alerts: memory alerts (based on
buffer overflow detection and process management), disk write alerts (such as
writes to registry keys and critical files) and network alerts. Data collection is au-
tomated, and once an alert is issued, a time segment of previous traffic to the node
is analyzed. A logit analysis determines what previous network activity explains
the current honeypot alert. The result can indicate whether an automated or worm
attack is present.
We demonstrate HoneyStat’s improvements over previous worm detection tech-
niques. First, using trace files from worm attacks on small networks, we demon-
strate how it detects zero day worms. Second, we show how it detects multi vector
worms that use combinations of ports to attack. Third, the alerts from HoneyStat
provide more information than traditional IDS alerts, such as binary signatures,
attack vectors, and attack rates. We also use extensive (year long) trace files to
show how the logit analysis produces very low false positive rates.

1 Introduction

Worm detection strategies have traditionally relied on artifacts incidental to the worm
infection. For example, many researchers measure incoming scan rates (often using
darknets) to indirectly detect worm outbreaks, e.g., [ZGGT03]. But since these tech-
niques measure noise as well as attacks, they often use costly algorithms to identify
worms. For example, [ZGGT03] suggests using a Kalman filter [Kal60] to detect worm
attacks. In [QDG � ], this approach was found to work with a large data set but proved
inappropriate for smaller networks.

To improve detection time and decrease errors caused by noise, the solution so far
has been to increase monitoring efforts, and gather more data. The intuition is that with
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more data, statistical models do a better job of identifying attacks. Thus, researchers
have suggested the creation of global monitoring centers [MSVS03], and collecting
information from distributed sensors. Distributed intrusion detection efforts are already
yielding interesting results [YBJ04,Par04].

Although the need for global monitoring is obvious, the value this has for local
networks is not entirely clear. For example, some local networks might have enough
information to conclude a worm is active, based on additional information they are
unwilling to share with other monitoring sites. Likewise, since global detection strate-
gies require large amounts of sensor data before detecting worm outbreaks, some local
networks might learn about a worm outbreak only after it becomes too late. That is,
global detection strategies depend on enough local networks falling victim to a worm,
before sufficient worm traffic becomes detectable. Also, we see significant problems
in gaining consensus among different networks, which frequently have competing and
inconsistent policies regarding privacy, notification, and information sharing.

Without doubt, aggregating information from distributed sensors makes good sense.
However, our emphasis is on local networks and requires a complimentary approach. In
addition to improving the quantity of monitoring data, researchers should work to im-
prove the quality of the alert stream. Thus, in [QDG � ,GSQ � 04], it was recommended
that researchers track worm behavior instead of just the scanning artifacts.

In this paper, we propose the use of honeypots to improve the accuracy of alerts
generated for local intrusion detection systems. To motivate the discussion, we describe
in Section 3 the worm infection cycle we observed in honeypots that led to the creation
of HoneyStat. Since honeypots usually require labor-intensive management and review,
we describe in Section 4 a deployment mechanism used to automate data collection.

HoneyStat nodes collect three types of events: memory, disk write and network
events. In Section 4, we describe these in detail, and discuss a way to compare and
correlate intrusion events detected by honeypots. Using logistic regression, we analyze
previous network traffic to the honeypot to see what network traffic most explains the
intrusion events. Intuitively, the logit analysis asks if there is a common set of network
inputs that precede honeypot intrusions. Finding a pattern can determine the presence
of an automated attack or worm.

To demonstrate HoneyStat’s effectiveness, in Section 6, we describe our experience
deploying HoneyStat nodes, and a retrospective analysis of network captures. We also
use lengthy (year long) network trace files to analyze the false positive rate associated
with the algorithm. The false positive rate is found to be low, due to two influences: (a)
the use of honeypots, which only produce alerts when there are successful attacks, and
(b) the use of user-selected confidence intervals, which let one define a threshold for
alerts.

Finally, in Section 7, we analyze whether a local detection strategy with a low false
positive rate (like HoneyStat) can make an effective worm detection tool. We consider
the advantages this approach has for local networks.



Local Worm Detection 3

2 Related Work

Honeypots A honeypot is a vulnerable network decoy used for several purposes: (a) dis-
tracting attackers, (b) early warnings about new attack techniques, (c) in-depth analysis
of an adversary’s strategies [Spi03,Sko02]. By design, a honeypot should not receive
any network traffic, nor will it run any legitimate production services. This greatly re-
duces the problem of false positives and false negatives that are an issue with other
types of IDS systems.

Traditionally, honeypots have been used to gather intelligence about how human
attackers operate [Spi03]. The labor-intensive log review required of traditional honey-
pots makes them unsuitable for a real-time IDS. In our experience, data capture and log
analysis time can require a 1:40 ratio, meaning that a single hour of activity can require
a week to fully decipher [LLO � 03].

The closest work to our own is [LLO � 03], which uses honeypots in an intrusion
detection system. We have had great success here at the Georgia Institute of Technology
utilizing a Honeynet as an IDS tool, and have identified a large number of compromised
systems on campus. The majority of these systems have been compromised by worm
type exploits.

Researchers have also considered using virtual honeypots, particularly with hon-
eyd [Pro03]. Initially used to help prevent OS fingerprinting, honeyd is a network dae-
mon that exhibits the TCP/IP stack behavior of different operating systems. It has since
been extended to emulate some services (e.g., NetBIOS).

Conceptually, honeyd is a daemon written using libpcap and libdnet. To emulate a
service, honeyd requires researchers to write programs that completely copy the ser-
vice’s network behavior. In other words, instead of running an OS in emulation, honeyd
uses a network daemon that behaves like a particular service. Assuming one can write
enough modules to emulate all aspects of an OS, there are many benefits: (a) an en-
tire subnet can be emulated by a single machine, confusing attackers, and (b) scanning
worms experience latency delays, if they scan to local emulated networks.

Recently, honeyd was offered as a way to detect and disable worms [Pro03]. We
believe this approach has promise, but must overcome a few significant hurdles before
it is used as an early warning IDS. First, it is not clear how a daemon emulating a
network service can catch zero day worms. If one knows a worm’s attack pattern, it
is possible to write modules that will behave like a vulnerable service. But before this
is known, catching zero day worms requires emulating even the presumably unknown
bugs in a network service. Worms that do anything complex (such as downloading a
trojan) easily evade honeyd, until a module emulating the bug is created.

Second, honeyd’s ability to delay worms does come at a cost. By emulating a large
virtual network, a machine essentially invites a worm to attack the local network. De-
pending on the topology, this may cause the worm to consume large amounts of local
bandwidth. In any event, a worm can overcome efforts to distract it with decoy networks
simply by adding more threads, or by counting the number of local failed connections to
infer the operation of LaBrae-style defenses [Lis01]. We were unable to find solutions
to these limitations, and so do not consider virtual networks as a means of providing an
improved alert stream. Instead, we used full honeypots.
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More closely related to our work, [Kre03] suggested automatic binary signature
extraction using honeypots. This work used honeyd, flow reconstruction, and pattern
detection to generate IDS rules. The honeycomb approach also has promise, but uses
a very simple algorithm (longest common substring) to correlate payloads. This makes
it difficult to identify polymorphic worms and worms that use multiple attack vectors.
Honeycomb was more than adequate for its stated purpose, however: extracting string
signatures for automated updates to a firewall.

Worm Detection Worm propagation and early detection have been active research
topics in the security community. In worm propagation, researchers have proposed an
epidemic model to study worm spreading, e.g., [Sta01,ZGT02,CGK03]. In worm early
detection, researchers have also proposed different techniques to identify worm ac-
tivities at an early phase, e.g., Kalman Filter [ZGGT03], ICMP message collected at
border routers to infer worm activity [BGB03] and victim counter-based detection al-
gorithm [WVGK04]. All these approaches require a large deployment of sensors or a
large monitoring IP space (e.g., ����� IP addresses) in order to collect distributed data for
analysis. The data collection and analysis architecture is coordinated by “cyber Center
for Disease Control” [SPN02]. Researchers have also proposed various data collection
and monitoring architectures, e.g., “network telescopes” [Moo02] and “Internet Storm
Center” [Ins].

Our objective is also to conduct early worm detection. However, considering the
current difficulty and challenges in large space monitoring system (e.g., difficulty in
data sharing, privacy, difficulty in coordination), instead of counting on a large mon-
itoring system and IP space for data collection, our detection mechanism is based
on local networks, in particular, local honeynet or honeypots for worm detection. In
our prior work [QDG � ] we analyzed the current worm early detection algorithms,
i.e., [ZGGT03] and [WVGK04], and found the instability and high false positives when
applying these techniques to local monitoring networks. Therefore, we develop a new
worm detection algorithm that can identify worm activities with a low false positive rate
and retrieve worm infection procedures using our correlation mechanism.

Event Correlation Several techniques have been proposed for the alert/event corre-
lation, e.g., pre-/post-condition-based pattern matching [NCR02,CM02,CLF03], chron-
icles formalism [MMDD02], clustering technique [DW01] and probabilistic-based cor-
relation technique [VS01,GHH01]. All these techniques count on a certain form of prior
knowledge of attack step relationship. Our approach is different from these techniques
in that our approach aims to detect zero-day worm attack and our correlation mecha-
nism does not depend on prior knowledge of attack step relationship but statistical pat-
tern analysis. Statistical alert correlation was presented in [QL03]. Our work is different
in that our correlation analysis is based on variables collected over short observations.
Time series-based analysis proposed in [QL03] is good for relatively long observation
variables and requires a series of statistical tests in order to accurately correlate vari-
ables.
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3 Worm Infection Cycles

If local networks do not have access to the volume of data used by global monitoring
systems, what local resources can they use instead? Studying worm infections gives
some insights, and identifies what data can be collected for use in a local IDS.

Consider the simple scenario where a honeypot receives network traffic from a re-
mote host, and then begins to send out traffic to different machines. One might suppose
that the traffic sent to the honeypot was a worm. Or, it could represent the actions of a
live human hacker. Our suspicions become stronger if there are similarities in the traffic
sent to and generated by the honeypot. For example, if the destination ports are always
the same, or if the payload is substantially similar, one can suspect automated malware.

Further proof comes when one observation follows another, i.e., when multiple hon-
eypots are compromised in a pattern. This is not unlike how security researchers cur-
rently spot fast breaking worms and viruses. Using e-mail, IRC or instant messaging,
researchers compare local observations, and quickly spot emerging patterns. We pro-
pose the use of specially modified honeypot sensors to automate this process, and help
detect worm outbreaks.

3.1 Model of Infection

A key assumption in our monitoring system is that the worm infection can be described
in a systematic way. We first note that worms may take three types of actions during an
infection phase. The Blaster worm is instructive, but we do not limit our model to this
example.

Blaster consists of a series of modules designed to infect a host [LUR03]. The first
module was based on a widely available RPC DCOM exploit that spawns a system
shell on a victim host. The “egg” payload of the worm is a separate program (usually
“msblast.exe”) that has undergone many revisions.

Memory Events The infection process, illustrated in Figure 1(a), begins with a probe
for a victim providing port 135 RPC services. The service is overflowed, and the victim
spawns a shell listening on a port, usually 4444. (Later generations of the worm use
different or even random ports.) This portion of the infection phase is characterized
by memory events. No disk writes have taken place, and network activity cannot (yet)
be characterized as abnormal, since the honeypot merely ACKs incoming packets and
appears to run basic services. Still, a buffer overflow has taken place, and the infection
has begun by corrupting a process.

Network Events The Blaster shell remains open for only one connection and closes
after the infection is completed. The shell is used to instruct the victim to download
(often via tftp) an “egg” program. The egg can be obtained from the attacker, or a third
party (such as a free website, or other compromised host.) The time delay between the
initial exploit and the download of the egg is usually small in Blaster, but this may not
always be the case. Exploits that wait a long period to download the egg risk having the
service restarted, canceled, or infected by competing worms (e.g., Nachi). Nonetheless,
some delay may occur between the overflow and the “egg” transfer. All during this
time, other harmless network traffic may arrive. This portion of the infection phase is
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often characterized by network traffic. Downloading the egg for example requires the
honeypot to initiate TCP (SYN) or UDP traffic.

In some cases, however, the entire worm payload can be included in the initial attack
packet. In such a case, network events may not be seen until much later.

Disk Events Once the Blaster egg is downloaded, it is written to a directory so it
may be activated upon reboot. Some worms (e.g., Witty [LUR04]) do not store the
payload to disk, but do have other destructive disk operations. Not every worm creates
disk operations.

These general categories of events, although present in Blaster, do not limit our anal-
ysis to just the August 2003 DCOM worm. A local detection strategy must anticipate
future worms lacking some of these events.

3.2 Improved Data Capture

Traditional worm detection models deal with worm infection at either the start or end of
the cycle shown in Figure 1(a). For example, models based on darknets consider only
the rate and sometimes the origin of incoming scans, the traffic at the top of the diagram.
The Destination Source Correlation (DSC) model [GSQ � 04] also considers scans, but
also tracks outgoing probes from the victim (traffic from the bottom of the diagram).
The activity in the middle (including memory and disk events) can be tracked.

Even if no buffer overflow is involved, as in the case of mail-based worms and
LANMAN weak password guessing worms (e.g., pubstro worms), the infection still
follows a general pattern: a small set of attack packets obtain initial results, and further
network traffic follows, either from the egg deployment, or from subsequent scans.

Intrusion detection based only on incoming scan rates must address the potentially
high rate of noise associated with darknets. As noted in Figure 1(a), every phase of the
infection cycle may experience non-malicious network traffic. Statistical models that
filter the noise (e.g., Kalman) require large data sets for input. It is no wonder, then,
that scan-based worm detection algorithms have recently focused on distributed data
collection. As noted above, these efforts are starting to have good results.

But what about networks that are unwilling or unable to participate in global de-
tection strategies? The needs of local network detection motivated our initial inquiry.
Our first hypothesis was that instead of increasing the quantity of data, early worm de-
tection may be possible with a higher quality input stream. As noted above, there are
many aspects of the worm infection cycle that are ignored by simple scan rate detection
algorithms.

4 HoneyStat Configuration and Deployment

The foregoing analysis of the worm infection cycle generally identified three classes
of events that one might track in an IDS: memory, disk and network events. As noted
above in Section 2, it is difficult to track all of these events in virtual honeypots or
even in stateful firewalls. Networks focused on darknets, of course, have little chance
of getting even complete network events, since they generally blackhole SYN packets,
and never see the full TCP payload.
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A complete system is needed to gather the worm cycle events and improve the data
stream for an IDS. We therefore use a HoneyStat node, a minimal honeypot created in
an emulator, multihomed to cover a large address space. The deployment would typi-
cally not be interesting to attackers, because of its minimal resources (limited memory,
limited drive size, etc.) Worms, however, are indiscriminating and use this configura-
tion.

In practice, we can use VMware GSX Server as our honeypot platform. Currently,
VMware GSX Server V3 can support up to 64 isolated virtual machines on a single
hardware system [VMW04]. Mainstream operating systems (e.g. windows, linux, Unix,
etc.) all support multihoming. For example, Windows NT allows up to 32 IP addresses
per interface. So if we use a GSX server with 64 virtual machines running windows and
each windows having 32 IP addresses, then a single GSX machine can have �����������
�
	�	 IP addresses.

In practice, we found nodes with as little as 32MB RAM and 700MB virtual drives
were more than adequate for capturing worms. Since the emulators were idle for the
vast majority of time, many instances could be started on a single machine. Although
slow and unusable from a user perspective, these virtual honeypots were able to respond
to worms before any timeouts occur.

The honeypots remain idle until a HoneyStat event occurs. We define three types of
events, corresponding to the worm infection cycle discussed in Section 3.

1. MemoryEvent. A honeypot can be configured to run buffer overflow protection
software, such as a StackGuard [Inc03], or similar process-based monitoring tools.
Any alert from these tools constitutes a HoneyStat event. Because there are no
users, we found that one can use very simple anomaly detection techniques that
would otherwise trigger false positives on live systems.

2. NetworkEvents. The honeypots are configured to generate no outgoing traffic.
If a honeypot generates SYN or UDP traffic, we consider it to be an event.

3. DiskEvents. Within the limits of the host system, we can also monitor honeypot
disk activities and trap writes to key file areas. For example, writes to systems logs
are expected, while writes to C:\WINNT\SYSTEM32 are clearly events. In prac-
tice, we found that kqueue [Lem01] monitoring of flat virtual disks was reasonably
efficient. One has to enumerate all directories and files of interest, however.

Data recorded during a HoneyStat event includes:

1. The OS/patch level of the host.
2. The type of event (memory, net, disk), and relevant capture data. For memory

events, this includes stack state or any core, for network events this is the out-
going packet, and for disk events this includes a delta of the file changes, up to a
size limit.

3. A trace file of all prior network activity, within a bound �  . This provides a record
of traffic to the honeypot, for use in analysis. The size of �  is discussed in Section
5.

Once events are recorded, they are forwarded to an analysis node. This may be on
the same machine hosting the honeypots, or (more likely) a central server that performs
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logging and propagates the events to other interested nodes. Figure 1(b) shows a con-
ceptual view of one possible HoneyStat deployment. In general, the analysis node has a
secure channel connecting it with the HoneyStat servers. Its primary job is to correlate
alert events, perform statistical analysis, and issue alerts.

(a) Infection Cycle (b) Deployment

Fig. 1. a) General pattern of Blaster worm attack. Because of modular worm architectures, victims
are first overflowed with a simple RPC exploit, and made to obtain a separate worm “egg”, which
contains the full worm. The network activity between the initial overflow and download of the
“egg” constitutes a single observation. Multiple observations allow one to filter out other scans
arriving at the same time. b) HoneyStat nodes interact with malware on the Internet. Alerts are
forwarded through a secure channel to an analysis node for correlation.

Several actions are taken when a HoneyStat event is reported.

1. First, we check if the event corresponds to a honeypot that has already been recorded
as “awake” or active. If the event is a continuation of an ongoing infection, we sim-
ply annotate the previous event with the current event type. For example, if we
first witness a MemoryEvent, and then see a DiskEvent for the same honey-
pot, we update the MemoryEvent to include additional information, such as the
DiskEvent and all subsequent network work activity. The intuition here is that
MemoryEvents are usually followed by something interesting, and it is worth
keeping the honeypot active to track this.

2. Second, if the event involved NetworkEvents (e.g., either downloading an egg
or initiating outgoing scans), the honeypot reporting the event is reset. The idea here
is two-fold. In keeping with the principle of honeypot Data Control [LLO � 03],
we need to prevent the node from attacking other machines. Also, once network
activity is initiated, we have enough attack behavior recorded to infer that the worm
is now infective. If only DiskEvents or MemoryEvents are observed, the node
is not reset.
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(a) Sampling Events (b) Event Aggregation

Fig. 2. a) In the top diagram, a HoneyStat MemEvent occurs, and the honeypot is allowed to
continue, in hopes of capturing an egg or payload. (The event is immediately analyzed, how-
ever, without delay.) If a subsequent NetEvent occurs, we update the previous MemoryEvent
event and reset. In the bottom diagram, we see a NetEvent without any prior MemoryEvent,
indicating our host-based IDS did not spot any anomaly. To prevent the worm from using the
honeypot for attacks, we immediately reset, and analyze the circled traffic segment to find what
caused the honeypot activity. b) Aggregating multiple honeypot events can help spot a pattern,
and identify which port activity is common to all events.

Since the honeypot is deployed using an emulator, resets are fast in practice. One
merely has to kill and restart the emulator, pointing the program in round-robin
style to a fresh copy of the virtual disk. The disk image is kept in a suspended state,
and no reboot of the guest OS is required. The reset delay is slight, and its effect on
detection time is considered in the analysis in Section 6.

3. Third, the analysis node examines basic properties of the event, and determines
whether it needs to redeploy other honeypots to match the affected OS. The intu-
ition here is that HoneyStat nodes are often deployed to cover a variety of operating
systems: Linux, Windows, and with different patch levels. If one of the systems falls
victim to a worm, it makes sense to redeploy most of the other nodes to run the vul-
nerable OS. This improves the probability that an array of HoneyStat nodes will
generate events. Again, the delay this causes for detection is discussed in Section
7.

4. Finally, the HoneyStat event is correlated with other observed events. If a pattern
emerges, this can indicate the presence of a worm or other automated attack. Any
reasonable correlation of events can be done. In the next section, we present a
candidate analysis based on logistic regression.

As an example, in Figure 2(b), we see three different honeypots generating events.
Prior input to the honeypots includes a variety of sources. For simplicity, the example
in Figure 2(b) merely has three different active ports, ��������������	 . Intuitively, we can
use the time difference between the honeypot event and the individual port activity to
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infer what caused the honeypot to become active. But if all these events are from the
same worm, then one would expect to see the same inputs to all three honeypots. In
this case, only � � is common to all three. A logistic regression presents a more flexible
way of discovering the intersection of all inputs and provides a better explanation why
a honeypot has become active.

5 Logistic Analysis of HoneyStat Events

Our key objective is the detection of zero-day worms, or those without a known signa-
ture. Without the ability to perform pattern matching, our task is analogous to anomaly
detection. We therefore use a statistical analysis of the events to identify worm behav-
ior. Statistical techniques, e.g., [MHL94,AFV95,PN97,QVWW98], have been widely
applied in anomaly detection, . In our prior work, we applied time series-based statisti-
cal analysis to alert correlation [QL03].

Our preference was for a technique that can effectively correlate variables collected
in a short observation window with a short computation time. Time series-based anal-
ysis is good for a relatively long observation and requires a series of statistical tests in
order to accurately correlate variables. It is also often not suitable for real-time analy-
sis because of its computationally intensive nature. Therefore, in this work, we instead
apply logistic analysis [HL00] to analyze port correlation.

Logistic regression is a non-linear transformation of the traditional linear regression
model. Instead of correlating two continuous variables, logistic regression considers
(in the simplest case) a dichotomous variable and continuous variables. That is, the
dependent variable is a boolean “dummy” variable coded as 0 or 1, which corresponds
to a state or category we wish to explain. In our case, we treat the honeypot event as
a dichotomous variable, i.e., the honeypot is either awake (1) or quiescent (0). Logit
analysis then seeks to explain what continuous variables explain the changes in the
honeypot state, from asleep to awake.

We settled on using a logit analysis only after considering other, more restrictive
analysis techniques. A simple logistic regression, for example, would compare contin-
uous to continuous variables. In the case of honeypots, this would require either mea-
suring rates of outgoing packets, or identifying some other continuous measurement in
the memory, network and disk events. Since it only takes one packet to be infected or
cause an infection to spread, a simple linear regression approach would not clearly iden-
tify “sleeper worms” and worms on busy networks. Additionally, measuring outgoing
packet rates would also include a significant amount of noise, since honeypots routinely
complete TCP handshakes for the services they offer (e.g., normal, non-harmful web-
service, mail service, ftp connections without successful login, etc.). Using continuous
variables based on outgoing rates may only be slightly better than using incoming scan
rates.

The basic form of the model expresses a binary expectation of the honeypot state,�������
(asleep or awake) for � events, as seen in Eq. (1).

������� � 		�
����� � where � ��� � 
��
������
	

����  
�
	

� �
 
! �#"

 
! � � (1)
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In Eq. (1), � is a counter for each individual honeypot event, and � is a counter for
each individual port traffic observation for a specific honeypot. Each �

 
! � is the regres-

sion coefficient corresponding to the "
 
! � variable, a continuous variable representing

each individual port observation. We have one error term
�

and one constant � � for the
equation. To set values of "

 
! � , we use the inverse of time between an event and the port

activity. Thus, if a MemoryEvent (or honeypot event � ) occurs at time � , and just prior
to this, port � on that same honeypot experienced traffic at time ������� , the variable "

 
! �

would represent the port in the equation, and would have the value of 	�
	 . This biases
towards events closer in time, consistent with our infection model discussed in Section
3.

An example shows how honeypot events are aggregated. Suppose one honeypot
event is observed, with activity to ports

�
� 	 ��� � ������ ��� � � . We calculate the inverse

time difference between the port activity and the honeypot event, and store the val-
ues for " 	 ! 	 � " � ! 	 ������ " � ! 	 in a table that solves for

�
. Suppose then a second event is

recorded, in the same class as the first. We add the second event’s values of " 	 ! � � " � ! � ������
� " � ! � to the equation. This process continues. After each new event is added, we re-
solve for

�
, and calculate new values of � . After sufficient observations, the logit anal-

ysis can identify candidate ports that explain why the honeypots are becoming active.
(The number of observations required to have confidence in the logit results is discussed
below.)

The inverse time relation between event and prior traffic allows one to record arbi-
trary periods of traffic. Traffic that occurred too long ago will, in practice, have such
a low value for "

 
! � that it cannot affect the outcome. As a convenience, we cut off

prior traffic �  at 5 minutes, but even this arbitrary limit is generous. Future work will
explore use of other time treatments, such as 	���	 , and 	� �
	 , as a means of further biasing
toward more recent network events. Note that this assumption prevents HoneyStat from
tracking worms that sleep for a lengthy period of time before spreading. These worms
are presumably self-crippling, and have a slow enough spread rate to allow for human
intervention.

A key variable in this analysis includes the Wald statistic, which lets us test whether
a variable’s coefficient is zero. The Wald statistic is merely the ratio of the coefficient
to its standard error, with a single degree of freedom [HL00]. The Wald statistic can be
used to reject certain variables, and exclude them from a model. For example, if ports
� � � � 	 �������� � were observed prior to a honeypot event, we might exclude some of these
ports based on the ratio of their coefficient �

 
! � , and their standard error. Thus, the Wald

statistic essentially poses a null hypothesis for each variable, and lets us exclude vari-
ables with zero coefficients. (After all, a variable with a zero � value does not contribute
to solving Eq. 1). This analysis is helpful since it reduces noise in our model. However,
since it uses a simple ratio, when the standard error is large, it can lead one to not reject
certain variables. Thus, the Wald statistic can be used to remove unlikely variables, but
might not always remove variables that have no affect.

Applying logistic analysis involves the following steps. First, for a particular hon-
eypot event � , we estimate the coefficients, i.e., � � ! � ��� 	 ! � ���� � � ! � , using maximum like-
lihood evaluation [HL00] (MLE). In this step, we try to find a set of coefficients that
minimize the prediction error. Stated another way, MLE assigns values that will maxi-
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mize the probability of obtaining the observed set of data. (This is similar to the least
squares method under simple regression analysis.)

Second, we use the Wald statistic to evaluate each variable, and remove those below
a user-selected threshold of significance level, say, ��� . The intuition of this step is that
we try to evaluate whether the “causal” variable in the model is significantly related
to the outcome. In other words we essentially ask the question: Is activity on port �
significantly related to the honeypot activity or was it merely random?

If the analysis results in a single variable explaining changes in the honeypot, then
we report the result as an alert. If the results are conclusive, the event data is stored
until additional events are observed, triggering a renewed analysis. Of course, since
the events involve breakins to honeypots, users may also wish to receive informational
alerts about these events, regardless of whether a worm has been detected. (As noted
in Section 3, manual attacks can sometimes preceded automated attacks, such as with
Blaster.)

6 HoneyStat in Practice

To evaluate HoneyStat’s potential as a local worm detection system, we tested two key
aspects of the algorithm: (a) does it properly identify worm outbreaks, and (b) what
false positive rate does it produce? Testing showed that HoneyStat could identify worm
outbreaks, with a low false positive rate. Our testing with available data showed the
false positive rate of zero.

6.1 Worm Detection

In [QDG � ], we used data from six honeypots that became active during the Blaster
worm outbreak in August 2003. The trace data used for the analysis also included net-
work traffic from some 100 /24 darknet IPs. Figure 3 shows an aggregate view of traffic
to all the honeypots on August 9 and 11, as well as background traffic to the darknets.

If we mark the honeypot activity as NetEvents, we can examine the previous
network activity to find whether a worm is present. As shown in Table 1, a logit analysis
of the honeypot data shows that of all the variables, port 135 explains the tendency of
honeypots to become active. (In our particular example, one can even visually confirm
in Figure 3(a) that honeypot activity took place right after port 135 traffic arrived.) The
standard error reports the error for the estimated � , and the significance column reports
the chance that the variable’s influence was merely chance. The Wald statistic indicates
whether the � statistic significantly differs from zero.

The significance column is the most critical for our analysis, since it indicates
whether the variable’s estimated � is zero. The lower the score, the less chance the
variable had no influence on the value of

�
. Thus, we eliminate any variable with a

significance above a threshold (5%). From this, the observations for ports 80, 8080, and
3128 can be discounted as not a significant explanation for changes in

�
.

In this case, the logit analysis performs two useful tasks. First, we use the signif-
icance column to rule out variables above a certain threshold, leaving only ports 135,
139 and 445. Second, the analysis lets us rank the remaining variables by significance.



Local Worm Detection 13

 1

 10

 100

 1000

 10000

15:00

S
ca

ns

Hour

Scans to Honeypot Port 445
Scans to Honeypot Port 139
Scans to Honeypot Port 135

Scans to Darknet Port 445
Scans to Darknet Port 139
Scans to Darknet Port 135

(a) HoneyStat Worm Detection

 0

 2

 4

 6

 8

 10

 12

 14

06:20 06:25 06:30 06:35 06:40 06:45 06:50

S
ca

ns

Time of Day, August 9, 2003

Scans to Honeypot, Port 135
Scans to Honeypot, Port 80

Scans to Honeypot, Port 8080
Scans From Honeypot, port 135

(b) HoneyStat Observance of Non-
Worm Events

Fig. 3. a) HoneyStat worm detection for Blaster. The Blaster attack on August 11 is detected
by the honeypots. Upward arrows, not drawn to scale, indicate the presence of outgoing traffic
from the HoneyStat nodes. Traffic prior to the honeypot activity is analyzed, using the inverse of
time difference, so that more recent activities more likely explain the change in the honeypot. A
logit analysis shows that prior scans to port 135 explains these episodes–effectively identifying
the blaster worm. b) Avoiding false positives. Here, we see a trojaned honeypot node becoming
active days prior to the Blaster worm outbreak. However, since this event is seen only in isolation
(one honeypot), it does not trigger a worm alert. Traffic to ports 80 and 8080 does not bias the
later analysis.

The logit analysis did not pick one individual port as explaining the value of
�

. The
alert that issues therefore identifies three possible causes of the honeypot activity. As
it turns out, this was a very accurate diagnosis of the Blaster outbreak. Recall that just
prior to Blaster’s outbreak on port 135, there were numerous scans being directed at
ports 139 and 445. The port 135 exploit eventually became more popular, since only a
few machines were vulnerable on 445 and 139. We are aware of no statistical test that
could focus on port 135 alone, given the high rate of probing being conducted on ports
139 and 445. This required human insight and domain knowledge to sort out.

The number of observations required for logistic regression appears to be a matter
of some recent investigation. In [HL00], the authors (eminent in the field) note “there
has been surprisingly little work on sample size for logistic regression”. Some rough
estimates have been supplied. They note that at least one study show a minimum of 10
events per parameter are needed to avoid over/under estimations of variables [HL00].
Since each honeypot activity observation is paired with a corresponding inactivity ob-
servation, HoneyStat would need to generate 5 HoneyStat events to meet this require-
ment. Section 7 notes how waiting for this many observations potentially affects worm
detection time.

Since each event involves an actual compromise of a system, one could also report
alerts with a lower confidence level. While we might want more samples and certainty,
we can at the very least rank likely ports in an alert.
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Table 1. Logit Analysis of Multiple HoneyStat Events

Variable � Standard Error Wald Significance
port 80 -17463.185 2696276.445 .000 .995
port 135 3.114 .967 10.377 .001
port 139 1869.151 303.517 37.925 .000
port 445 -1495.040 281.165 28.274 .000
port 3128 -18727.568 9859594.820 .000 .998
port 8080 10907.922 10907.922 6919861.448 .999
constant .068 1.568 .210 1.089

6.2 Benefits of HoneyStat

HoneyStat provides the following benefits to local networks:

1. It provides a very accurate data stream for analysis. Every event is the result of
a successful breakin. This significantly reduces the amount of data that must be
processed, compared to Kalman filter, and other traditional scan-based algorithms.

2. Since HoneyStat uses complete operating systems, it detects zero day worms, for
which there is no known signature.

3. HoneyStat is agnostic about the incoming and outgoing ports for attack packets, as
well as their origin. In this way, it can detect worms that enter on port ��� , and exit
on port � � .

Thus, HoneyStat reports an explanation of worm activation, and not merely the
presence of a worm. Other information, such as rate of scans, can be obtained from
the traffic logs captured for the logit analysis. [Kre03] has already suggested a simple
method of quickly extracting a binary signature, in a manner compatible with Honey-
Stat.

6.3 False Positive Analysis

Analyzing the false positive rate for HoneyStat is subtle. Since honeypot events always
involve breakins and successful exploits, it might seem that honeypot-based alert sys-
tems would produce no false positives. This is not the case. Although the underlying
data stream consists of serious alerts (successful attacks on honeypots), we still need
to analyze the potential for the logit analysis to generate a false positive. Two types of
errors could occur. First, normal network traffic could be misidentified as the source
of an attack. That is, a worm could be present, but the analysis may identify other,
normal traffic as the cause. Second, repeated human breakins could be identified as a
worm. We do not consider this second failure scenario, since in such a case, the manual
breakins are robotic in nature, and (for all practical purposes) indistinguishable from,
and potentially just as dangerous as any worm.

Model Failure It is not feasible to test HoneyStat on the Internet. This would require
waiting for the outbreak of worms, and dedicating a large IP space to a test project. We
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can instead perform an retrospective analysis of a tracefile to estimate the chance of a
false positive.

Using a honeypot activity log, dating from July 2002 to March 2004, we used uni-
form random sampling to collect background traffic samples, and injected a worm at-
tack. The intuition is this: we wish to see if a HoneyStat logit analysis were to cause
a false positive. This could occur if normal non-malicious background traffic occurs
in such a pattern that random sampling produces a candidate solution to the logistic
regression.

The data we use for the background sampling came from the Georgia Tech Hon-
eynet project. We have almost two years of network data captured from the Honeynet.
The first year of data was captured on a Generation I Honeynet, which is distinguishable
by the use of a reverse firewall serving as the gateway for all the Honeypots. The second
year of data was captured from a Generation II Honeynet, which is distinguishable by
the use of a packet filtering bridge between all of the Honeypots and their gateway. The
data is available to other researchers in a sanitized form.

A random sampling of over 250 synthetic honeypot events did not produce a false
positive. This certainly does not prove that HoneyStat is incapable of producing a false
positive. Rather, this may reflect the limited range of the data. A much larger data set is
required to fully explore the potential of logistic regression to misidentify variables.

Even if false positives are found, it should be noted that these are not the usual false
positives, or type I errors found in IDS. Instead, a false positive with a HoneyStat node
is half right: there are breakins to honeypots, even if the algorithm were to misidentify
the cause.

7 HoneyStat as an IDS Tool

The previous sections have shown that HoneyStat can detect worm attacks with a low
false positive rate. This shows that it could be incorporated into a local intrusion de-
tection system. A more important question is whether this strategy can detect worm
outbreaks early. In this section, we use an analytical model to evaluate HoneyStat’s
effectiveness, in particluar , the worm detection time with various HoneyStat’s config-
urations.

7.1 Early Local Detection

A HoneyStat deployment can effectively detect worms that use random scan techniques.
As noted in [ZGGT03], a random scan is a common scan strategy used by many worms,
e.g., Code Red, Slammer, to generate a random IPv4 address to attack. Realistically we
assume the vulnerable hosts are uniformly distributed in the real assigned IPv4 space
(all potential victims are located in this space, denoted as � � 	����

), not the whole IPv4
space (denoted as � � ��� � ). Assume � is the total number of vulnerable machines on
the Internet, 	

 
is the number of whole Internet victims at time tick � and 
 is the scan

rate of worm (per time tick). So the scans entering space � at time tick � 
 	 should be�
 
� 	 ��
�	

 
� 

. Within this space, the chance of one host being hit is
	 � � 	 � 	� � ������� .

Then we have worm propagation equation Eq. ( 2).



16 Dagon, et al.

	
 
� 	 � 	

 
 � � � 	
 ���� 	 � � 	 � 	

�
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In fact because � and � are very big,
� 	 � � 	 � 	� � � � ��
 �� 	� 
 	

 
� 
� � � � . So the

spread rate is almost the same as seen in previous models (e.g., Analytical Active Worm
Propagation (AAWP) model [CGK03], epidemic model [KW93,KCW93,SPN02] etc.)

Now suppose we have a honeypot network with size � ( ��� � ). The initial num-
ber of vulnerable hosts is � � . Generally a network with size � has � ��� � vulnerable
hosts on average. But with HoneyStat, each network has its own mix of vulnerable OS
distributions. Since most worms target Windows, we can intentionally let most of our
honeypots run Windows so that we present a higher number of initially vulnerable hosts
to the worm. Without loss of generality we suppose � � ����� . We let � be the min-
imum ratio for vulnerable hosts. The number of local victims at time tick � is �  and� � � �

which means initially there is no victim in our honeypot network. The time for
the first HoneyStat node to become active is � 	 (clearly � 	 is the first time tick � when�  �� 	 ). We have

�  � 	 ��� � � 	 � � 	 � 	
�
��� ������ � � � � 
 � when � 
 	 � � 	


 �"! (3)

Here � � �#��� . We let �"! represent the time required to reconfigure most of the non-
vulnerable honeypots to run the same OS and patch level as the first victim. (In other
words, this is the time required, say, to convert most of the Linux honeypots to Win-
dows, if Windows is first attacked.) Since we need more observations for the logit anal-
ysis to work, as noted in Section 5, we shift some of our honeypots to match the vulner-
able OS. After this response time � ! , we suppose the number of new vulnerable hosts
becomes � 	 �$�&% . We let % represent the maximum ratio for vulnerable hosts. Nor-
mally % � 	

because we may not convert all of our HoneyStat nodes to the operating
system that is attacked. We might keep a few to detect other worms. Now we have

�  � 	 � 	�
 � 	 � 	 � � 	 � 	
�
� � ���� 	 � � 	(' � � � � 
 � when � 
 	*) � � 	


 � ! (4)

Here � 	 �+�&% . We can calculate the time (in terms of the whole Internet infection
percentage) when our first HoneyStat node is infected. Table 2 and Figure 4 use the
effect of different � and � . For example, we can see that using � � � 	 � and � � 	 � � ,
the first victim is found when only 0.9786% Internet vulnerable hosts are infected.

When the first HoneyStat node becomes infected, it informs the other nodes what
OS and patch level they should switch to. This takes time �,! (including communication
time and re-deploy time), after which there will be � 	 ���&% vulnerable hosts. After
redeployment, the chance of getting the next victim improves. This is shown in Eq. (4).
The effect of � �"% and �"! is shown in Figure 5.

From Figure 5 we can see that after redeployment we will quickly get enough vic-
tims when the whole Internet has a low infection percentage. The reason is that we have
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Fig. 5. Effect of HoneyStat network size,
�

, maximum percentage of vulnerable hosts, � , and
time to redeploy after first victim, 	�
 , on the victim count. These graphs, drawn with � ���� ��� ;
N=500,000; scanrate=20 per time tick; Hitlist=1, show that with a larger IP space monitored by
HoneyStat,

�
, the detection time (as a precent of the infected Internet) improves greatly. Even

with only � � � IPs monitored, detection time is quick, requiring only a little more than 1% of the
Internet to be infected.
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Table 2. Time (infection percentage) when HoneyStat network has a first victim

� ��� ��� ��� � � ��� � � � ��� � ��� ��� � � � ��� � ��� ��� � ��� ��� � ��� � � � ���
10% 3.9141% 1.9558% 0.9786% 0.4895% 0.2448% 0.1223% 0.0613% 0.0307% 0.0155%
25% 1.5634% 0.7825% 0.3910% 0.1959% 0.0981% 0.0491% 0.0247% 0.0124% 0.0063%
50% 0.7825% 0.3910% 0.1959% 0.0981% 0.0491% 0.0247% 0.0124% 0.0063% 0.0033%
75% 0.5210% 0.2606% 0.1305% 0.0655% 0.0328% 0.0165% 0.0083% 0.0043% 0.0022%
100% 0.3910% 0.1959% 0.0981% 0.0491% 0.0247% 0.0124% 0.0063% 0.0033% 0.0017%

got more vulnerable honeypots by reconfiguring the OS and patches to the same as the
first victim’s. Therefore, we get higher chances of being hit by the worm. For example,
if � � � � � � �,� � �
	

�
� % � � � 	 � � ! � 	��

, it is still very early to have 4 victims in the
HoneyStat network, when only 0.013% Internet vulnerable hosts are infected. To have
10 victims, still only 0.0261% Internet vulnerable hosts are infected. And we can see
that � !�� 	 �

or �"! � 	�� �
, % � � � 	 or % � � � 
 do not affect the outcome very much. In-

stead, the size of honeynet � is the most important factor. Thus, the delay in switching
HoneyStat nodes does not play a critical role in overall worm detection time.

In section 4, we noted that machines can be massively multihomed, so that one
piece of hardware can effectively handle hundreds of IP addresses in multiple virtual
machines. From the discussion of � above, � 	�	 is already a reasonable number of IP
addresses that can be used in our local early worm detection. Assuming we had a few
computers sufficient to allow � � � 	�	 and � � � � � � , we can see from Table 2 that the
first victim appears when on average 0.1959% of Internet vulnerable hosts are infected.
Suppose % � � � 	 � � � !�� 	��

, then to have 5 victims in our honeynet (or enough to have
a minimal number of data points suggested in Section 6), it is still very early when only
0.4794% of the Internet’s vulnerable hosts are infected. When one IP is infected, we’ll
reset the OS so that it can be infected again. This kind of ”replacement” policy makes
the whole honeynet work as we have discussed above although there are only 64 virtual
machines running on every GSX server.

Thus, HoneyStat provides an effective detection capability to local networks, as-
suming they have the modest collection of hardware needed to host multiple multi-
homed images, and (more importantly) assuming they have the extra IP space. Since
most universities or businesses might have this many spare addresses in a /16 space,
HoneyStat can serve as an effective local detection strategy. The general insight is that
by improving the quality of the alerts, one can do early detection without having to
obtain large data sets usually associated with distributed monitoring efforts. We note
that this detection strategy is complimentary to other intrusion detection measures. The
local network may benefit from participating in global detection efforts as well.

8 Conclusion

Worm detection systems have traditionally used scan rates. To overcome noise in this
approach, statistical models have required large data sets. In turn, this means networks
must participate in global detection systems in order to detect new worm outbreaks.



Local Worm Detection 19

This approach has merit. But local detection systems need further exploration. We
have suggested that in addition to increasing the quantity of data used by alert systems,
the quality can be improved as well.

It has been said that if intrusion detection is like finding a needle in a haystack,
then a honeypot is like a stack of needles. Literally every event from a honeypot is a
noteworthy event. Honeypots are therefore used to create a highly accurate alert stream.

Using logistic regression, we have shown how a honeypot alert stream can detect
worm outbreaks. We define three classes of events, to capture memory, disk and network
activities of worms. The logit analysis can eliminate noise sampled during these events,
and identify a likely list of causes. Using extensive data traces of previous worm events,
we have demonstrated that HoneyStat can identify worm activity. An analytical model
suggests that, with enough multihomed honeypots, this provides an effective way to
detect worms early.

While participation in global monitoring efforts has value, we believe local network
strategies require exploration as well. Further work could include identification of addi-
tional logistic models to sort through large sets of data, coordination of shared honeypot
events, integration with other intrusion detection techniques, and response.
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