The paper begins on the next page.
Before you begin reading, we have a request...

Please Help Make This Study Better.
Take Part by Contributing Datal

The data in our study is collected by a script that has been carefully designed
to anonymize data so as to protect your privacy while providing us with only
enough information to publish aggregated data on the potential threat described
in our paper. By contributing to this study, you help to ensure that our results
best reflect SSH usage in environments like yours. Further, we encourage you
to run the script on as many hosts as possible as this will greatly improve the
quality of our data set and accuracy of our results. Anyone on a Macintosh
(OS X or higher), UNIX, or UNIX derivative (BSD/Linux/Sun, etc.) operating
system can participate.

To get the data collection script, download
http://nms.csail.mit.edu/projects/ssh/collect-ssh.tar.gz

If you have wget, you can do this from the command line using the following

command:

wget http://nms.csail.mit.edu/projects/ssh/collect-ssh.tar.gz
Then, execute the following four commands to configure the script.

gzip -d collect-ssh.tar.gz
tar xvf collect-ssh.tar
cd collect-ssh

sh build-CR.sh

Finally, run the script with the following command. If you are an authorized
administrator of this host, please consider running the script as root so that we
can collect the full set of data from all ssh user configurations on the host.

perl collect-ssh.pl

You will then be shown the data being collected. When collection is complete,
you will be asked if you are willing to submit it to us and prompted for a trans-
mission method. If you are behind a firewall, we recommend email submission.
Regardless of how the data is transmitted, it will be encrypted first. If you
experience trouble in your environment with the default options, read section
IT of the README file that comes with the script for more information.

Further information about protecting your site from information harvesting by
patching an existing OpenSSH installation or upgrading to OpenSSH 4.0 is
available on our project website at

http://nms.lcs.mit.edu/projects/ssh/

We greatly appreciate your support!

http://nms.csail.mit.edu/projects/ssh/collect-ssh.tar.gz
http://nms.lcs.mit.edu/projects/ssh/README.collect-ssh
http://nms.lcs.mit.edu/projects/ssh/

Inoculating SSH Against Address-Harvesting Wofms

Stuart E. Schechter Jaeyeon Jung Will Stockwell Cynthia McLain
ses@Il.mit.edu jyjung@mit.edu bigwill@mit.edu cdmclain@Il.mit.edu

Abstract tions have become widespread. A small set of attackers
have exploited weaknesses in SSH authentication prac-
tices to impersonate legitimate users and compromise

Address harvestings the act of searching a compro- systems at a large number of major universities, corpora-

mised host for addresses of other hosts to attack. Secug@yns, national laboratories, supercomputing centers, and

Shell (SSH), the tool of choice for administering and eyen military installations [8, 15, 29, 19].

communicating with mission-critical hosts, security-

critical hosts, and even some routers, leaves each user@ne reason these attackers have been able to target such

list of previously contacted hosts open to harvest by anya large number of institutions is that SSH clients store

one who compromises the user’'s account. Attacker&nown _hosts databases, which map the list of remote
have combined address harvesting with myriad mechhosts each user has previously contacted via SSH to their
anisms for impersonating a host'’s legitimate users tgublic keys. When a host is compromised and an at-
obtain a remote shell via SSH. They have succeedethcker learns how to impersonate one of its users, the
in breaching systems at major academic, commerciallist of addresses in thenown _hosts database is eas-
and government institutions. In this paper, we detail thely harvested for use in targeting other hosts. Such re-
threat posed should attackers automate this mode of aliable target lists reduce both the time required to find
tack to create a self-propagating worm. We then presentulnerable hosts and the likelihood that attacks will raise

a countermeasure to defend against address harvestiagarms due to failed connections or authentications. Se-

attacks, with an implementation written for OpenSSH.curity practitioners have observed attackers using the

We also present the first study to measure how much inknown _hosts database to identify target hosts for fu-

formation is available to attackers who harvest addressetsire compromise [8].

from usersknown _hosts databases and search for un- _)))
encrypted identity key files. We found that a surpris- In Section 2, we will describe a number of weaknesses in

ingly large fraction of theknown _hosts entries were authentication and credential management practices that
to hosts on distant networks, that the bulk of these en€XP0se SSH servers to impersonation attacks, such as the
tries could be reached by compromising a small fractiorf€-use of weak passwords on multiple hosts and reliance

of the user accounts in our survey, and tBam% of ~ ON the operating system to protect identity key cre-

weaknesses include attacks that use stolen authentica-

tion credentials and that insert fraudulent credentials into
password files oauthorized _keys files [19]. We

1 Introduction describe how these impersonation attacks could be used
to construct a worm in Section 3.

The SSH protocol has done much to popularize the usé Section 4, we describe how these machanisms were
of cryptography for remote command execution, file Used to carry out the recent attacks. We also present re-
transfen and other services. However, Cryptographi@ent trends in malicious code that indicate these same
channels alone are not enough to ensure these servicEchniques may soon be fully automated to create a
will only be accessed by their intended users for the pur¥orm, or self-propagating malicious program. These
poses they authorize. As SSH has become one of oufends include the use of automated tools to perform on-
most trusted services, attacks that highlight its limita-line dictionary attacks against SSH and the emergence
of worms that perform online dictionary attacks on other
*This work is sponsored by the United States Air Force under Air protocols.
Force Conract F19628-00-C-0002. Opinions, interpretations, conclu-

sions and recommendations are those of the author and are not neces-
sarily endorsed by the United States Government.) fo better understand the consequences of attacks that

harvest addresses from SSH, we have initiated the firghromised. If one such client account or host is compro-
multi-institution study, on SSIKHnown _hosts relation- mised, then the attacker can read the unencrypted iden-
ships and key management, collecting data from 2,077ity key and use it to authenticate to the target host.

user accounts on 92 hosts. We use the data from this

study, presented in Section 5, to explain how thesel 2 — Abuse of forwarded authentication agent

known _hosts databases have enabled attackers to reAuthentication agents are programs employed by users

peatedly compromise host after host, and network aftef0 authenticate on their behalf. They free users from the
network. need to retype the pass phrases that protect their identity-

key credentials each time that they authenticate.
In Section 6, we discuss the countermeasures that can be
the trade-offs they require. As a result of this work, onehalf when accessing services from an application run on

of these countermeasures has now been implementgdrémote host. However, most SSH agents do not ver-
into OpenSSH 4.0. ify that the actions a remote host performs are the ac-

tions the user intended to authorize. Thus, when the user
believes he is authorizing a CVS transaction he may in-
stead be authorizing an SSH connection to a host tar-

2 SSH Impersonation Attacks geted by the attacker.

Before we can adequately describe the recent attack®.2 Credential theft

on SSH and the potential of SSH worms, we must first

explain the mechanisms that can be used to imperson-

ate users. These mechanisms require no protocol din attacker who can obtain a user’s credentials can im-
software vulnerability in SSH. Instead, an attacker whopersonate that user on any host that accepts these cre-
compromises one user account on a host can emp|09€ntia|5. An attacker may choose from any of a number
other exploits to compromise other user accounts on th&@f approaches to steal credentials.

host. The mechanisms described below, and summa-

fized in Table 1, leverage access to one compromised+ — Password theft by compromised SSH server
user account on a source host in order to enable the at/Nen authenticating via passwords, the SSH client will

tacker to impersonate that user when authenticating to gend the user's password credentlals, to the server overan
target host on which that user also has an account. encrypted channel. When the user's password arrives,
it is then decrypted into plaintext before it is checked

against the password file. If the server belongs to or has
2.1 Exploiting misplaced trust been compromised by the attacker, then the attacker can
modify the SSH server to collect these passwords. The
attacker can then proceed to gain access to other hosts
SSH servers and user accounts are often configured ¥h which this password is used for authentication.
trust other hosts to act on their behalf, to authenticate
users, or to safely store user credentials. All of theseThis attack can be thwarted if the client is configured to

practices are potential targets of attack. authenticate via a challenge-response protocol, such as
SSH identity-key authentication or the Secure Remote
T1 — Exploiting reliance on other host’s security Password (SRP) extension [26].

If an attack comes from a compromised host that is

listed in theshosts.equiv orhosts.equiv filein =~ C2 — Extraction of keys from authentication agents

the target serversetc directory, or theshosts or To free users from the need to retype the pass phrases
.rhosts file of the targeted user, the attacker will be that protect their identity key credentials, an authentica-
permitted to connect to a target user’s account withoution agent must keep these credentials in its memory.

presenting user credentials.) i
Once an account is compromised, an attacker can search

Even if no hosts are explicitly trusted to authenticate onthe process table for active authentication agent pro-
behalf of the target host, such trust is often implicit. cesses. He can then copy, dump, or directly inspect the

Many users place their public identity keys in their o e Kaminek hell client, REX [11
; . e agent in Michael Kaminsky's remote shell client, ,
authorized ,keys files on SSH servers and leave 12], provides a partial solution to this problem by verifying that the

their sepret identiFy key unencrypted on h0§ts they use agvice being authorized (but not the command or parameters passed
SSH clients, trusting that these accounts will not be COé'nio the service) is indeed the one that the user intended.

memory space of those processes to which he has accaggjuired by software that is run at a gateway host. At-
in order to locate identity key credentials. tackers can strike users on these gateway hosts even if

o an SSH server is not run on the user's immediate client.
C3 — Online dictionary attacks

An online dictionary attack is staged by repeatedly at-

tempting to authenticate to a remote host using commoi2.3 Insertion attacks

passwords. Intrusion detection systems can be trained to

detect these attacks and terminate communications with

attacking hosts. However, if an attacking host is per-An attacker may be able to insert his own commands
mitted to continue these attacks and chooses a large sétto @ user session or insert his own credentials in place
of targets, it will eventually find servers that allow con- of a legitimate user’s credentials. The former attack, in

tinued connection attempts and emp]oy common pass\NhiCh the attacker impersonates the user for part of the

words. SSH session, can be used to perform the latter attack,
which allows the attacker to impersonate the user in fu-
C4 — Offline dictionary attacks ture sessions.

After obtaining the password file on a compromised
host, an attacker can test candidate passwords againdt— Session capture and command insertion

the password file or try to decrypt identity key files in While proper use of identity keys, authentication agents,
user home directories. While it is likely that an attackerand agent forwarding can protect against credential theft
who could access the password file could compromis@t gateway hosts, these practices offer very little real pro-
this account without the password, chances are that thé€ction if connection is routed through a compromised

user employs this password to authenticate to other hosgient or host. All communications are decrypted and

as well. Sucloffline dictionary attacks also differ from then re-encrypted at the client, and software at this host
their online counterparts in that the attacker need notcan insert, modify, or delete information at will.

run the authentication protocol. This is advantageou

because executing a network protocol increases the risK Credential insertion or replacement

that alarms will be activated and introduces a networI(A‘n attgcker can mse_rt an identity key into the user's
uthorized _keys file. The SSH server depends on

delay for each password tested. Once a user’s credefj-.") . .
tials have been compromised, the attacker can use the is file to determine which keys the user has authorized
' to serve as his credentials. If the compromised user’s

to gain access to other hosts on which they are accépted, i) ,
g 4 P home directory is located on a shared file system, the

C5 — Eavesdropping by client software or host attacker then uses the inserted identity keys to authen-

A patient attacker who has Compromised a user’s acticate as that user to other hosts that mount the user’s
count can modify or observe the SSH client and agenghared home directory.

to collect passwords and identity key pass phrases as tP] h K : h dfile h
user types them. It can then either store the host addres the attacker can write to the system password file, he

username, and password triplets that it observes, or ﬁﬁn replace any or all user passwords with those of his
can send them directly to the attacker. choosing.

Many users find it convenient or necessary to open SSH

clients on hosts to which they are already connected via

SSH. We use the termateway hostso describe those 3 Components of an SSH Worm

hosts to which a user connects via SSH from a client and

from which the user then initiates a new SSH connectionTh ¢ d d h ber of h

to another host running the SSH server. It is often neces- e success of a worm depends on the number 0 osts
sary to use gateway hosts when firewalls prevent direcﬁhat are vulnerable to attack, the speed at which the

access from the user's immediate client to his or her deVO'™ ¢an propagate, and its ability to evade detection

sired destination host. SSH may also be employed téo avoid triggering a response. Depending on the avail-

protect file transfers, CVS commands, or other service?b'“ty of certain classes of vulnerabilities a_md the s}<|ll
of the author, a worm could target SSH using a variety

2/ 1995 study by Bishop and Klein [2] showed that 40% of pass- Of the attacks from Section 2, as summarized in Table 1.
words were crackable. More recent reliable statistics on the percent
of crackable passwords are harder to find. Suffice it to say that whileTo spread quickly, an SSH worm will need to infect

user awareness of weak passwords may have improved since then, ?g many new hosts as possible immediately after each

sophistication of cracking algorithms has also improved and the spee
of computers used to crack passwords has followed the expontentidl©St IS compromised. Upon compromising a new host,

growth of Moore’s law. 3 such a worm could impersonate that host's users by tak-

paJinbaJ jou 1001
aAoRIBIUI-UOU

|2

(0]

Q

Attack Event triggering attack opportunity 2
T1 | Unencrypted identity key file located User’s account or host compromised * X X
T2 | Forwarded agent used to authenticate attackercom.promIse of account or host alreagly X

running forwarded agents

C1 | Password stolen by compromised Web server New password-authenticated session X X

initiated to compromised server
Identity key extracted from SSH agent pro-Compromise of host running agent pro- X X
cesses cesses

Authentication protocol executed with

c2

C3 | Online dictionary attack on password file X X
correct username/password guess
Offline dictionary attack on passwords andPassword hash computation completed
C4 | . - . X X
identity keys with correct password guess
Password or key entered into previously comSSH client/agent executed on compro-
C5 . . . X
promised SSH client or agent mised host
I1 | Session insertion attack User’s account or host compromised * X

Table 1: Attacks on SSH and the properties that affect their effectiveness when used in a worm. An ‘X’ indicates
either that an attack can be run from a user accawat ot required, need not wait for interactive user events in
order to spreadnpn-interactivg or would not require excessive network traffic (labeséghlthy. A star (*) indicates

that the attack can run without root privileges, but only against accounts available to the compromised user.

ing immediate advantage of any unencrypted identityRegardless of how a worm performs impersonation, it
keys (T1), extracting identity keys from running agentswill need to identify target hosts. For attacks that em-
(C2), taking over any existing SSH client sessions (T2),ploy stolen credentials or forwarded agents, it will need
and using forwarded agents to authenticate on its behatb identify hosts on which a specific user has an ac-
(T2). Obtaining root access to the compromised hostgount. Attackers could not hope for a better repository
would enable these attacks to be carried out using dataf prospective target hosts addresses than that provided
from all of the host’s users, and would then allow the by the SSH client'«known _hosts databasé.For each
worm to begin an offline dictionary attack to obtain any user, this database stores addresses of the hosts to which
credentials that it does not already have. the user has connected, each of which is mapped to the

)) _host’s public key. Most implementations store this list
After the worm has exhausted all immediate targets, itsorted in the order in which the hosts were first con-

could steal passwords from users that login to its SSHacted, allowing the attacker to first focus on those hosts
server (C1) and observe clients and agents to collect crenat are newer and less likely to have been moved or re-
dentials (C5). While this may be unlikely to speed thetjreq.

overall spread, the worm can take advantage of any ac-

tivity that may have caused it to be detected — the adminThe user'sknown _hosts database is not the only
istrators may be next to login and his credentials may besource of addresses of potential targets. When present,
the most valuable of all. Whilenlinedictionary attacks the administrator-configured globahown _hosts file

(C3) are likely the slowest and most overt, worms mayprovides a list of targets that are likely to be receptive
still benefit from employing them after all other vectors to connections fronanyuser on the infected host. Once
have been exhausted. this wealth of information is exhausted, it may be pos-

o sible to find more host names in configuration files and
Of course, a remote exploit in SSH that allows the at-gSH server logs. These log files list, in plaintext, the

tacker to impersonate any user could enable a worm tgames of clients that have connected to the server and
spread to the set of all accessible hosts running vulnelihe yser accounts to which they connected.

able SSH servers. Such a worm could spread unencum-

bered by the delays incurred by attacks that wait for usein the upcoming sections, we will describe how attackers
interaction, search for credentials, or repeatedly run auhave used impersonation attacks to compromise remote
thentication protocols. The speed and stealth of such hosts and usekhown _hosts databases to identify ad-
worm would be bounded by its ability to correctly iden-

tify and contact other vulnerable hosts. 3While called theknown _hosts database, OpenSSH and other
implementations store this data in a flat file within a subdirectory of
the user’s home directory.

ditional targets. they put the pieces together.

In fact, such a worm attack would not be without his-
torical precedent. The Morris worm of 1988 used

4 Is an SSH Worm Imminent? fline dictionary attacks to crack passwords. The Mor-
ris worm also harvested target addresses from files such
as.rhosts and.forward [20]. Because the Morris

As automated patching has helped to reduce the availyorm preceded the advent of SSH, #rewn _hosts
ability of hosts with vulnerable software, attacks thatatabase was not available to it.

target authentication mechanisms have been on the rise.
As more attackers target SSH and these attacks become
more automated, the onset of worms that attack SSH ap-
pears imminent. 5 Empirical Data

Worms such as Lovgate [23], Deloader [21, 6], and
Gaobot [22] already usenline dictionary attacks in or- To better understand how an SSH worm might spread,
der to spread, though using protocols other than SSHwe have undertaken a multi-institution effort to collect
While such brute force attacks are among the least efdata from usersknown_hosts database entries and
fective, they are frequently found in the wild becausetheir overall SSH configuration. We made available a
they are among the easiest to write. data collection and reporting script, written in Perl, that
.) could be run on each host either by individual users to
While we are not aware of a worm that emplaysline qlect data from their own account or by system ad-
dictionary attacks against SSehlinedictionary attacks ministrators to collect data from all user accounts. The

targeting the protocol have been automated and madgaia collection and reporting script is publicly available
publicly available [18]. Evidence of their use appears; http://nms.lcs.mit.edu/projects/ssh/

in reports from the SANS Internet Storm Center [3] and
from the anecdotal reports of security professionals and
network researchers. 5.1 Collection methodology

Trojaned SSH clients have also become widespread, and

a number of these have been lifted from compromised summary of the information submitted by our data
hosts [4]. While such clients have been known to existcollection and reporting scriptollect-ssh.pl , is

for some time, the incidents of attacks using them hashown in Table 2.

been rising dramatically. In 2004, a number of high pro-

file attacks were staged using trojaned SSH clients an@! IP addresses collected, marked with a star (*), have
offline dictionary attacks. Hosts were compromised at ab€en anonymized twice using the prefix preserving al-
large number sites including major universities, nationaldorithm of Xuet al. [27]. The prefix preserving prop-
laboratories, and supercomputing centers [15, 29], a§'ty ensures that two addresses within the same network
well as major corporations and military installations [8]. before anonymization will fall into the network after
Logs that recorded attackers in action show SSH con@nonymization. The addresses were first anonymized by
nections to hosts in thienown _hosts database being the data collection script as it executed on the submit-

initiated immediately after thenown _hosts database ting host. The second anonymization step, performed
was read [8]. by us after the data were collected, is necessary to pre-

vent the anonymization key in that data collection script
As a result of the attacks, some installations had to bérom being used to reverse the anonymization function
taken offline for multiple days [15, 8, 29]. One of the ed- and identify hosts in our published results. Public keys
ucational institutions that contributed to our anonymizedand usernames, marked with two stars (**), are replaced
study reported that they had been forced to initiate a polby their SHAL [14] hashes.

icy of disallowing all SSH connections from outside net-)) o
works. When our data collection script runs on a submitting

host, it queries that host’s IP address and includes the
The scope of these attacks appears to be limited only bgnonymized address as part of the submission report.
the time available to the attackers, a factor that would noiWhen we receive the submitted report over a TCP con-
constrain a worm. Given that most of the components anection, we compare this submitted address with the IP
worm writer would require are already available, theresource address field as seen by our servers. Collecting
may be little time left to improve our defenses befogethe address at its source allows us to differentiate hosts

host information

OS and version
SSH and version
IP address*
Netmask

user identification

Username**
IP address* of host exporting user’'s home dir

known _hosts file for each user

IP address* of each host for which key is

authorized _keys file for each user

Public identity keys**

identity key files for each user

Public identity keys**
Flag: set if matching private key is encrypted
SSH key version

unique destination addresses. Of those, 14 submissions
came from hosts on which the collection script was run
as root and on which data were submitted from all users.
For 78 hosts, we received a total of 82 individual user
submissions with at most two user submissions per host.

The median number of uniqguknown _hosts ad-
dresses wag51 on hosts for which we collected data
from all users, but onlg4 for hosts on which we had to
rely on individual submissions. Thus it is reasonable to
assume that our data exclude a significant subset of the
known _hosts entries on hosts from which we received
individual submissions.

To illustrate the relationships between hosts represented
by known_hosts entries, we generated graphs in
which the nodes represent hosts from which we received
submitted data. Each edge represents an entry, in a
known _hosts database located on the host represented
by the source node, that contains the address and key of
the host represented by the destination node.

Figure 5 (attached as an appendix) is a graph of the
known _hosts relationships within the institution from
which we collected the most data. Of all the hosts in
the graph, only the 3 hosts represented by rectangular

nodes ran the script as root and provided us with their
full set of known _hosts relationships. Even though
Table 2: The contents of the report generated byye collected data from a subset users, themselves on a
collect-ssh.pl , organized by data source. small subset of the hosts on the network, the connec-
tivity of known _hosts relationships is quite extensive,
spanning 1,290 nodes within the organization.

within a local network even if these hosts are behind arpe set of nodes and edges visible in Figure 5 is also
network address translation (NAT) box. Though the ad-geceiving, as space constraints prevented us from dis-

dresses are anonymized, we can still use the IP SOUrGq,ying terminal nodes — those that are the destinations
addresses as seen by our servers to differentiate hosts @@ nown hosts edges but from which we have not

two distinct network_s, even if_they use the same local IP.ected any data. We have placed below the label of
address behind their respective NATSs.

each node the number of outgoing edges that would ex-

Before submitting the report, the script encrypts the Con_lsrt;;:lermmal nodes were included in the local network

tents using a public key to ensure that the report cann

be read by an eave_sdropper or an attacker who might "?‘ﬁ'he series of graphs in Figures 1(a), 1(b), and 1(c), show
tempt to compromise the server we use to store submitg,o spread oknown _hosts edges starting at a single
ted data. Users can opt to send the encrypted report {0, nodes3 in Figure 5, and spreading through the in-
our collecting server via either HTTP or SMTP, or they it tion. Figure 1(a) shows the nodes at the institution
can save it to a file for manual submission. that are destinations of the origin nodkfgown _hosts
entries. A total of six terminal destination nodes are not
displayed. Figure 1(b) overlays the nonterminal nodes
at the institution that are destinationskefown _hosts
entries of the hosts in Figure 1(a). Figure 1(c) shows the

. . next iteration of thesknown _hosts relationships.
At the time of writing we have collected data from P

2,077 user accounts that contdknown _hosts files
that were submitted from 92 distinct hosts. These files
contain a total of 31,44known _hosts entries to 8,009 6

5.2 Results

(<)

@

(b)

<’l/].i

Tk

/AL
@I’@!ﬂhﬁ “Qf{//

=N

<7

(©

empirical data

0.8

L
1
H

0.6 =

0.4 =

cumulative fraction of known_host links

. _II'I]

0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
bit-wise network distance from source host

Figure 2: The fraction oknown_hosts entries for
which the destination host falls within a given bit-wise
network distance of the source host. For reference, the
dotted line represents, for a given source host, the prob-
ability that a destination selected uniformly from the IP
space would fall within the given bit-wise distance from
a source host.

Among the eight hosts that are a step away from our
origin is one that itself has 574 outward edges. A total
of 574 nodes can be reached with two steps from the
origin, and an additional 177 can be reached with a third
step. These graphs illustrate that, regardless where an
attack starts, once a node with a large number of outward
edges can be reached the attack can spread to the rest of
the internal network in a very small number of steps.

To understand how extensiveknown _hosts rela-
tionships span organizations, we look at the bit-wise
network distance between eakhown _hosts entry’s
source and destination host. For IPv4 addresses, bit-wise
network distance is calculated by subtracting the num-
ber of common high order bits (prefix) from the length
of the address (32). Figure 2 is a cumulative distribution
function that shows the fraction &hown _hosts en-

tries that fall within a given bit-wise network distance.
As expected, the distribution shows tlkabwn _hosts
relationships are biased towards nearby hosts. Despite
this bias, we observe that nearly 40% of the relationships
span different /16 (Class B) networks and 30% span dif-
ferent /8 (Class A) networks, which helps to explain why
SSH attacks can so easily spread between organizations.

In fact, theknown _hosts relationships from this small
set of hosts span 88 /8 (class A) prefixes, or 55% of all

Figure 1. Host nodes that are reachable in 1 (a), Z/3lid /8 networks: Compromise of a single gateway
(b), and 3 (c) steps from a source host by traversing

known _hosts edges.

4The 160 valid class A networks are those that exclude two private
/8 networks and 94 unallocated /8 networks, as documented by the

y plies that it may be possible to compromise the bulk of

09 / all hosts by compromising only a small subset of user
08 / accounts.
0.7

In addition to collectingknown _hosts data, our col-
lection script also checked to see if SSH2 identity keys

0.6
0.5 /

CDF of # of destinations

0.4 ',ar"! were present and whether users had encrypted them with
0.3 __;'* pass phrases. Of 274 identity key files collected, 172
0.2 (62.8%) were unencrypted and open to abuse by anyone
0.1 g able to read them.

°, 10 100 1000 10000

User accounts sorted by the known_hosts entries

Figure 3: At any pointr = 1, the y value represents 6 Countering Address Harvesting Attacks

the fraction of destination hosts reachable from user ac-

countsl ..., where the user accounts on the X axis arege way to thwart the spread of address-harvesting SSH

sorted such that the first account haskhewn _hosts worms is to hinder their ability to harvest target host

file with the most unique destination hosts. names and addresses from the hosts they infect. If
worms can be forced to resort to IP scanning to find tar-
gets, then they can be detected using existing scan de-

host can yield accounts on many networks. We identified€ction techniques [16, 25].
a single host, outside of the network shown in Figure 5
that hadknown _hosts relationships with 74 unique /8
networks.

These host names and addresses cannot be completely
removed as they represent important information about
the software’s configuration before execution, state be-

Figure 6 showsknown _hosts relationships that span tween executionskfiown hosts), and history for
organizations. The nodes represent either distinct eduforensic purposes (log files). Each type of file has differ-
cational institutions (labeled .edu), firms (.com), or /g entrestrictions regarding which parties need to be able to
networks (labeled with the most significant byte of the read or write to it, as illustrated in Table 3, and so differ-

anonymized 1P address)‘ Once again’ Space Constrain@t SO|uti0nS (Or Va..rian-ts on SO|uti0nS.) are beSt for eaCh.
prevent us from showing terminal nodes. The most challenging file to managekisown _hosts

as it must be read and modified both by SSH and by
Given the extensive interconnections between hosts, wthose that use and administer it. We will take advantage
were next led to ask just how much of this information of the fact that the common case is for the file to be read
a worm would need in order to spread. We observedy SSH, and that users only need to access the file man-
a wide variance in the number of destinations in usersually when locating, copying, or removing an entry.
known _hosts databases. About 70% of user accounts

have less than 10 unique destinations recorded in their SSH User/Admin
known _hosts database, whereas over 10% of user ac- Reads \ Writes | Reads \ Writes
counts have used SSH to contact more than 50 distinCtknown _hosts X X X X
hosts. To assess the contribution of each user accountfo config files| X X X
the set of unigu&nown _hosts destinations, we sort log files X X

the user accounts starting with the user account that has

the mostknown _hosts entries. The second is the one Table 3: Of the files read or written by SSH that
with the mosknown _hosts entries to destinations not contain host names/addresses of other hosts, only
reached by the first user account, the third is the one wittlknown _hosts must be readable and writable by both
the mostknown _hosts entries not reached by the first SSH and its users.

or second user account, and so on.

Figure 3 shows that the number of distinct destinations)
grows rapidly, with the first 100 user accounts (less tharf-1 ~ Protectingknown _hosts
5% of the total) contributing 5,885 unique destinations

0 : o o
(more than 74% of all unique destinations). This im To understand how SSH implementations could hide

Internet Assigned Numbers Authority [9, 10] 8 addresses irknown_hosts databases, it is instruc-

\ Contents ofknown _hosts entry \ Harvest resistance Additional usability cost

(0) name, ipaddr, key None None
h name), , . . '

) Ezl’ hgzl Z ip adeo?r)) Resists plaintext New commands required to find/delete

ker’ 27 : harvesting entries

(51, h(s1 0 nameg), Resists offline dictionary User can no longer locate entries in
(@) | (s2,h(s2 0nameip_addp), attacks on IPv4 known _hosts using only their IP

key addresses address

Resists offline dictionary User can't distinguish between
ki

3 Ezl’ Zgzl Z 2222 ipe)e?c)i,dro key)) attacks on the IPv4 changed key from known host and new

da2t’ean(21time entrv added ’| address space and on | key presented by unknown host. Adds

-entny- host names need for key revocation lists.

Table 4: A summary of possible organizations for SBbwn _hosts entries, wherée: is a one-way collision-
resistant hash function and and s, are randomly generated values (salts). Each approach is incrementally more
resistant to harvesting than the one above it, but incurs an incremental cost in usability.

tive to look at how password databases evolved to destored in eactkknown _hosts entry.
fend against similar threats. Early multi-user com-
puters stored passwords in plaintext files and, like
known _hosts files, relied upon the file system to pre- (s2,h(s2 oip-addn),
vent their misuse by keeping them secret. In 1974, key

Evans, Kantrowitz and Weiss [5] proposed that pass- o . .
words be hashed with a one-way function before bein We first implemented this approach into OpenSSH 3.9

stored in the password file Their key observation was %smg SHA1 [14] as our hash functignand base64 en-

that the host did not need to store the passwords themC-Od'ngS of random 64 bit numbers as salis. In response

selves, but only enough information to later verify that ato earlier drafts of this paper, the OpenSSH development

password provided to the host was the same one the usgerr?.mh?d?d their O\ém wgplergesn:'az%n of this approach,
had previously provided. Surely similar approaches carf/NicN ISt appeared in ©pen o
be used to protect SSkhown _hosts databases.

(s1,h(s1 oname),

When the SSH client is called upon to initiate a new
We present three possible approaches with which Onegonnectlorj, 'E[(t:r?I;CkS thre] dizstlndatlorkl) host n?mi and ad-
way collision-resistant hash functions can be used tq ress agains own_nhosts —database entry by en-

hide the identity of hosts iknown _hosts databases. Fry. A special string (<. Inour |mple.men.t at|p nandi|
In Table 4 we summarize these approaches and contra the OpenSSH 4.0 implementation) indicates that the
them with the originaknown hosts format. Each ost name or address has been replaced with a hashed

solution is more harvest-resistant than the last, but thiéOken' In th|§ case, the destination host name or address

added resistance comes at a cost in usability. is hashed using the salt extracted from the token, ba_se64
encoded, and then compared to the hash encoded in the

Approach (1) — Simple name/address hashing token. Matching encodings imply with reasonably high
probability that the addresses match. To maintain back-

The simplest approach to prevent harvesting of plaintextvards compatibility with earlier SSH implementations,

host names and addresses is to hash their values as oaelaintext comparison between addresses takes place

would hash a password in the password file. The usevhen the address in tHeown _hosts database is not

of randomly generated salts,, ands, ensure that the hashed.

work required to stage a dictionary attack against one

entry cannot be re-used on other entries. This simpléince entries in thé&nown_hosts database are cre-

hashing strategy can be summarized by the informatioted and verified automatically by the SSH client, its be-
havior will remain unchanged from the user's perspec-

tive. We implemented two new commands for manip-
ulating theknown _hosts file should the user need to
5For details on the adoption of this approach, see the early WOI’{O so.remove-knownhost deletes a host entry from
of Robert Morris (Sr) and Ken Thompson [13] or more recently KNOWN_hosts by name andssh-showkey returns
Garfinkelet al.[7]. 9 the key of a host specified by name or address. In the

OpenSSH 4.0 implementation, these commands are irthe host’s key, the SSH client should instead concatenate
tegrated as options ssh-keygen . the host key onto the value to be hashed for the name and

N address entries as illustrated below.
To speed the transition to hashed host addresses we

provide a programssh-hostname-encoder , that (s1,h(s1 o nameokey)),
hashes all of the addresses in an exiskingwn _hosts (s2, h(s2 o nameo ip_addro key)) ,
file. In OpenSSH 4.0, this functionality is accessible via dateandtime_entry added

a command option iash-keygen . We have also pro- _
vided a Perl scriptconvert _known_hosts.pl ,that When ahostis contacted in the future, its key will be re-

can be run to convert aklnown _hosts files on a given trieved before th&nown _hosts file is searched and so

filesystem into hashed host address format. As no such is still quite possible to check whether the key is asso-
script was provided by the OpenSSH 4.0 team for theiiciated with any known host name/address pairs. Obtain-
implementation, we have provided one. It can be downing the keys requires the attacker stage an online dic-

loaded from tionary attack, contacting hosts that it may not be able

http:/nms.Ics.mit.edu/projects/ssh to authenticate to and increasing the likelihood of de-
tection. Passing a large dictionary of these keys around

Approach (2) — Resisting IPv4 dictionary attacks with a worm would be bandwidth intensive and likely to
raise alarms.

As with password files, the hashing approach is poten-
tially vulnerable to arofflinedictionary attack. On IPv4 The additional benefit incurs a significantly higher us-
networks, the attacker can expect to identify an IP ad-ability cost than the previous approaches. First, both the
dress with a worst-case average2st SHA1 calcula- host name and the key are required in order to identify
tions. While this might be time consuming enough to or remove an entry from thknown _hosts database.
slow spread and raise alarms, an attacker can decreaffea key was lost and needed to be revoked, a revoca-
the expected work by starting with addresses near thaion list would need to be employed to revoke all keys
of the compromised host (recall Figure 2). All of the assigned to that host before the date on which the key
nodes on the victim host’s class C can be identified bywas replaced. What's more, users would not differenti-
performing less than 256 SHA1 calculations for eachate between the response received when they first con-
known _hosts entry. tacted a host and the response received when a host'’s
key changed. Fortunately, the correct security behavior
The possibility of dictionary attacks leads us to suggesin poth cases should be the same — the user should check

that SSH client implementations may not want to storeye host key’s hash against a hash obtained through a se-
IP addresses at all. It should only be necessary to ass@yre alternate channel.

ciate the key with the address used by the user on the

command line, which is most often the domain name.While this alternative design will countenffline dic-

If hashed IP addresses must be stored, than we proposienary attackspnline dictionary attacks remain a con-
that it should be salted both with a random salt and withcern, especially if no system is in place to detect them.
the host name. This will significantly increase the costAn attacker staging armnline dictionary attack can

of attack in networks where reverse DNS lookups arefetch the host key once and test it against each user’s
disabled, and increase the likelihood of detection wheré&known _hosts database on the compromised host. To
these lookups are enabled but monitored. makeonlinedictionary attacks less effective, it would be
beneficial if the key the client expected from the server
changed for each user. This approach would be most
(s2, h(s2 o Nnameip_addn), acceptable for protocols in which clients and servers, af-
key ter authenticating in a first communication, agreed upon
a symmetric key for future sessions. Alternatively, the
user’s identity key could be used to create a certificate
Host names are also subject to dictionary attack, esthat the server could use in future communications with

pecially if common names such as “gateway”, “mail”, the user to assert the authenticity of its key.

and “database” are used. A design approach to elimi-

nateofflinedictionary attacks requires more fundamental6_2 Protecting configuration files

changes to way that SSH clients confirm that the host be-

ing contacted is indeed one that was last contacted at the

same address. We propose that rather than storing etost address hashing can also be used to protect ad-
tries that consist of hashed names and address mappl%ddmsses in user-configured files such as the trusted host

(s1,h(s1 onamq),

Approach (3) — Resisting all offline dictionary attacks

file (.shosts) and the user’'s main configuration file, been introduced by Yee and Bellare [28], Schneier and
so long as the host name need not be read until the hostelsey [17], and Waterst al.[24].

to be contacted has been identified. However, using in-

comprehensible tokens in place of plaintext addresses ift Simplified algorithm that meets our requirements can
these files may raise concerns for any sophisticated usd}e constructed using a public key pair. When the SSH
or system administrator who may want to audit theseServer begins executing, it creates a random session key

files to ensure they do not place trust in the wrong re-*o for use with a faster symmetric cryptosystem. It then
mote hosts. encrypts thist, with the public key, encodes the result

into base64, and writes it to the log.
Fortunately, there is more flexibility in designing solu-
tions to this problem than that of tHerown _hosts Each log entry then begins with its sequence number,
database, as configuration files are not written by SSH:» followed by the entry contents encrypted with sym-
Thus, solutions do not need to support mechanism&etric keyk;, wherek; = h(k;—1). Once the logging

through which the SSH client or server can change thdunction has encoded the entry, itimmediately calculates
file. k;+1 and discards:; from memory. To derivek; from

k;+1 would require breaking the one-way hash function.
To ensure that configuration files could be audited, hash-
ing approach (2) could be modified to use a deterministi¢Vhen the system administrator wants to review the log
public key encryption algorithm as its hashing function. he must provide his private key, which is password pro-
While the function remains one way and collision resis-tected and ideally stored on a a host other than the one

tant to those without the key, an auditor with the key cangénerating the log. The private key is used to deckypt
reverse the function. The key for any entry can then be derived by calculat-

Some may find it simpler to use hashing approach (2)

and to maintain an encrypted master configuration file)

in which host names and addresses are not hashed. fo4 Protecting gateway hosts
modify the configuration, the administrator decrypts the
master file to plaintext, makes changes to this plaintexy

master, copies it, obfuscates the addresses in the copy, thwart th d of attacks th h gat host
and finally re-encrypts the master file. However, if the 0 thwart the spread ol attacks through gateway nosts,
t is preferable to avoid running SSH clients on these

file is changed it may not be possible to determine how/ .) .
it was changed. hosts altogether. An ideal SSH gateway is one on which

the SSH server, but not the SSH client, is installed, and
through which users can forward TCP connections but
6.3 Protecting log files execute no other operations. To initiate a connection

from a local client to a server through such a gateway,

users first initiate an SSH connection to the gateway and
The log files generated by the SSH server not only conthen initiate a second SSH connection from the local
tain the names of other hosts running the SSH protocotjient to the server through the gateway. This is one of

suite, but also the names of the user accounts on thosgie approaches recommended in the &S, the Secure
hosts. While this information is dangerous in the handsshe||: The Definitive Guidg]

of a worm, its presence can be essential to detect and
track intrusions. Logs should be easily converted backJnfortunately, the methods available to forward connec-
to plaintext form for processing. Fortunately, in explor- tions through the gateway are less than straightforward
ing the solution space to this problem we can take adand beyond the knowledge and abilities of most users.
vantage of the fact that logs need not be written by user®©ne method of constructing forwarded SSH connections
or administrators and, more importantly, that they needs to setup a proxy in the configuration file, but this must
not be processed by anyone other than the system’s atbe created for each gateway and makes the user’s config-
ministrators. uration file a more attractive target for harvesting. This
method also presents problems if the gateway uses any

We can prevent log entries from being harvested if weform of interactive authentication, such as host password
can encrypt these entries to ensure that, once writterythentication.

they can only be read using a secret key. Aveaaal-

gorithm to accomplish this would encode each entryAnother means to accomplish a forwarded connection
using a public key cryptosystem. Less computation-is to use local port forwarding. However, this opens

ally intensive approaches to securing audit logs hﬂ/mp the gateway to abuse from others on the same

hile hindering attempts to harvest addresses can help

myclient> ssh -H lazlo@gateway -H server If interactive authentication is used, the authentication
Establishing forwarded connection. Be sure to

close this shell window immediately after your interaction is confined within a box that clearly indicates
session is complete. the host to which the user is authenticating as shown in
Figure 4. All characters used to manipulate the cursor
position are ignored, with the exception of line feeds
| password; s I which cause a new line to be created within the box. If
characters exceed the length of the screen a new line is
created within the box.

Authenticating user ’lazlo’ to 'gateway’:

Authenticating user ’hollyfeld’ to ’'server’:

| | passwo 00 MR] | |

Connected to ’server’. 7 Conclusion
server>

Fi 4 AT ded . ing the obi We have explored the emerging threat to hosts that rely
igure 4: A forwarded connection using tite option. ., gqiy for their security and the form in which future

B_oundary quesﬁ urrﬁund lnteracr'ilve authent|cat|orr]1 S€SAttacks may take. In particular, we have articulated eight
sions, efns:Jr;]ngt atthe gateway host car:jnqt usedt gfselﬁﬁpersonation attacks on SSH that either exploit mis-
sion to fool the user into issuing commands intende Orplaced trust, use stolen credentials, or insert new com-

the client or server hosts. mands or credentials through stolen SSH sessions. Each
of these attacks can be exploited by an SSH worm when

. . ._combined with address harvesting kfiown _hosts
client host with access to the forwarded port. Th'sdatabases and other files.

method also requires that the user learn how to use the

HostKeyAlias configuration option so that the con- 1o show the scope of the threat of an SSH worm, we col-
nection forwarded through the local portisn'ttreated as gected data from 92 hosts and locatetown _hosts
connection to localhost in theown _hosts ~ database. relationships with 8,009 hosts on 55% of all valid /8
Finally, the user must use two different shells on thepetworks. We have also collected evidence indicating
client host to initiate clients and their connections to thenat identity keys are, more often than not, stored unen-
gateway and server. If a single shell is used, the gatewayrypted. These facts help to explain why attackers that

can initiate an interactive authentication session duringarget SSH have been able to quickly compromise new
which it spoofs the behavior the user expects after theygsts on new networks.

gateway connection is completed. The user may then
end up typing commands (and even passwords) to th&o address the ease with which host names and addresses
gateway while thinking he is sending them to the serverof SSH servers can be harvested from the client’s file
system, we have presented a series approaches for hid-
Given the complexity of the available options, it's little ing these addresses using hashing. These approaches
wonder that most users simply issue a command to théycjude countermeasures not only against plaintext har-
SSH client on the gateway host if one is available. Toyesting, but also against attempts to guess host names
ease the process of constructing forwarded connectiongng addresses. Finally, we suggest improvements to
we propose a SSH client command option, which we arexyisting approaches to forwarding SSH connections
currently implementing. through gateway hosts in order to reduce the effective-

ness of attacks on these hosts.
ssh -H gateway -H server

The-H option indicates the start of a new connection in

a connection chain. In the above example, the client esg
tablishes a connection with the gateway and then uses%
forwarded connection to contact the server. Any number

of gateway hosts can be used, each of which is contactefhis paper was first conceived in early 2004 and drafts
using a separate SSH client process. Local port forwardhave been in private circulation since June of that year.
ing is performed using UNIX domain sockets to avoid only |ate in the year did we first learn of the profusion

opening TCP/IP ports accessible to other users. Optiongt real world impersonation attacks taking place against
specified before the firsH are applied to all forwarded jnstallations of SSH.

connections if appropriate. Options specified between a
-H and a host name are applied only to that connectiloé10n February 15, 2005 an updated draft was submitted

Epilog

to officials at F-Secure, SSH Inc., and the OpenSSH de-[5] Arthur Evans Jr., William Kantrowitz, and Edwin
velopment team with a notification that public release of
this work was imminent.

OpenSSH responded with by creating their own imple-

mentation of host address hashing as part of OpenSSH6!

4.0 on March 9, 2005. Unfortunately, this implementa-

tion is turned off by default and does not come with a
script with which a system administrator can update all [7

of known _hosts files on a system. We have provided
such a script and instructions for turning hashing on at
http://nms.lcs.mit.edu/projects/ssh/

As of May 10, 2005, F-Secure and SSH Inc. have yet to [8]
respond.

9 Acknowledgments

(9]

[10]

The authors offer our gratitude to all of those who have
anonymously contributed data to our efforts at the ex-
pense of their own time and effort.

The authors would like to thank Lou Anschuetz, Hari
Balakrishnan, Robert Cunningham, David Dagon, Vic-
tor Hazlewood, Glenn Holloway, Roger Khazan, Cyn-
thia McLain, David Molnar, Scott Pinkerton, Michael D. [12]
Smith, and Bill Yurcik for their advice and comments.
Stuart Schechter would like to thank the National Sci-

ence Foundation for supporting this work while he was

[11]

at Harvard under grant number CCR-0310877, and the
MIT Lincoln Laboratory Advanced Concepts Commit-
tee for its support since his arrival at the laboratory.

References

(1]

(2]

(3]

(4]

Daniel J. Barrett and Richard E. Silverma8SH,
the Secure Shell: The Definitive Guid®’'Reilly
Media, Inc., Sebastopol, CA, February 2001.

Matt Bishop and Daniel V. Klein. Improving Sys-
tem Security via Proactive Password Checking.
Computers and Securit§4(3):233-249, 1995.

SANS Internet Storm Center. Port Graph (for port
22). http:/lisc.sans.org/port_details.
php?port=22&days=70

David Dagon.
ber 10, 2005.

Email correspondence, Decem-

13

[13]

[14]

[15]

[16]

[17]

] Simson Garfinkel,

Weiss. A User Authentication Scheme Not Requir-
ing Secrecy in the ComputeCommunications of
the ACM 17(8):437-442, 1974.

F-Secure. F-Secure Virus Descriptions: Deloder.
http://www.f-secure.com/v-descs/
deloader.shtml

Gene Spafford, and Alan
Schwartz. Practical UNIX & Internet Security
O'Reilly Media, Inc., Sebastopol, CA, 3rd edition,
February 2003.

Victor Hazlewood. Security Technologies Man-
ager, San Diego Supercomputer Center (SDSC),
Telephone correspondence, January 18, 2005.

Internet Assigned Numbers Authority.
Protocol V4 Address Spacettp://www.iana.
org/assignments/ipv4-address-space

Internet Assigned Numbers AuthoritRFC 3330:
Special Use IPv4 AddresseslETF, September
2002.

Internet

Michael Kaminsky. User Authentication and Re-
mote Execution Across Administrative Domains
PhD thesis, Massachusetts Institute of Technology,
September 2004.

Michael Kaminsky, Eric Peterson, Daniel B. Gif-

fin, Kevin Fu, David Mazires, and M. Frans

Kaashoek. REX: Secure, Extensible Remote Ex-
ecution. InProceedings of the 2004 USENIX An-

nual Technical Conferencgages 199-212, June

2004.

Robert Morris and Ken Thompson. Password Se-
curity: A Case History. Communications of the
ACM, 22(11):594-597, 1979.

National Institute of Standards and Technology.
Secure Hash Standard. FIPS PUB 180-1, April 17,
1995.

Scott C. Pinkerton. Network Solutions Manager,
Argonne National Laboratory, Email correspon-
dence, February 4, 2005.

Stuart E. Schechter, Jaeyeon Jung, and Arthur W.
Berger. Fast Detection of Scanning Worm Infec-
tions. InProceedings of the Seventh International
Symposium on Recent Advances in Intrusion De-
tection (RAID 2004)September 15-17, 2004.

Bruce Schneier and John Kelsey. Secure Audit
Logs to Support Computer ForensiésCM Trans-
actions on Information and System Security (TIS-
SEC) 2(2):159-176, 1999.

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

K-OTIK Security. SSH Remote Root of Computer Science and Engineering, November

password Brute Force Cracker Ultility. 1997.

http://www.k-otik.com/exploits/ o) .]

08202004.brutessh2.c.php ., August 20, [29] Wllllam Yurcik. _ Senior Systems Security En-

2004. gineer, The National Center for Supercomputing
Applications (NCSA), Telephone correspondence,

Abe Singer. Tempting Fatelogin: The USENIX January 28, 2005.

Magazine 30(1), February 2005.

Eugene H. Spafford. The Internet Worm Program:
An Analysis. Technical Report CSD-TR-823, Pur-
due Univerisity Department of Computer Sciences,
1998.

Symantec. Security response—
W32.HLLW.Deloder.
http://securityresponse.symantec.com/
avcenter/venc/data/w32.hllw.deloder.

html .

Symantec. Security Response—
W32.HLLW.Gaobot.AA.
http://securityresponse.symantec.com/
avcenter/venc/data/w32.hllw.gaobot.

aa.html

Symantec. Security Response—W32.Lovgate.mm.
http://securityresponse.symantec.com/
avcenter/venc/data/w32.hllw.lovgate @

mm.html .

Brent R. Waters, Dirk Balfanz, Glenn Durfee, and
D. K. Smetters. Building an Encrypted and Search-
able Audit Log. InProceedings of the 11th An-
nual Network and Distributed Security Symposium
(NDSS '04) February 1-6, 2004.

Nicholas Weaver, Stuart Staniford, and Vern Pax-
son. Very Fast Containment of Scanning Worms.
In Proceedings of the 13th USENIX Security Sym-
posium August 9-13, 2004.

Thomas Wu. The Secure Remote Password Pro-
tocol. InProceedings of the 1998 Internet Society
Network and Distributed System Security Sympo-
sium pages 97-111, March 1998.

Jun Xu, Jinliang Fan, Mostafa H. Ammar,
and Sue B. Moon. Prefix-Preserving IP Ad-
dress Anonymization: Measurement-based Secu-
rity Evaluation and a New Cryptography-based
Scheme. InProceedings of the 10th IEEE Inter-
national Conference on Network Protocols (ICNP
'02), November 12-15, 2002.

Bennet S. Yee and Mihir Bellare. Forward In-
tegrity for Secure Audit Logs. Technical report,
University of California at San Diego Departmem

"]00J se uel
1d1I0S UOND3||02 BIEP INO YIIYM U0 SBUO 3U] aJe Sapou JejnBuridosy papnjoxe ale ‘Salijua 193]|02 10U PIP aM UdIYM WOoJ) INg SaLIU8 SISOY~ UMOUYO suoireunssp
aJe 1ey] YI0M)3U Y] Ul SSPOU 3S0U] ‘SSpoU [eulwa]) TGZT "SaIUS SISOY URaquygns yey) uonnisuil ajbuls e uiyum sisoy g siuasaidal ydesd siyl g ainbiq

abpe oz

— 89
Bpe N0 0T /SBpa N0 G5\ /S9Bpe 10 T2\, [59Bpe N0 BTT| /SaBpa 110 6. /SBpa 110 0
o 61 o1 i o P

15

2 %P0 10 5%
S6pe 0 T /SBpe 10 €8 /%0Bpe 10 4T, ' Bp0 10 89
19 24 6

"SJUNO22. JSN 310W 10 U] WOJ} Bep 103]|00 0] 9|qe 819M aM UDIYM WOJ) SHIOMIBU 3S0Y] SBpoU Jejnbueoay "papnjoxs ae

S8POU [eulwla) 0/ YIOMIBU UONBUNSSP B 0] I0MISU 82In0S e woJj sdiysuone|al
g/ e 1o ‘(Wo2’) }IoMau ssauisng ‘(NPa°) }JoMIBU S,UOINIISUI JIWBPLI. Ue J3Yle WoJ) SISOy Jo 18S 10 1soy e sjuasaidal ydeiB ay) ul sepou ay) Jo yoe3 :9 ainbi4

S1SOY~ UNEYPO |[e Juasaldal 01 pasn si abpa ajbuls v iomau (Vv sse|d)

sebpo o € safipe 10 9
8/GLT 88T
sefpe 1o /T safpe o € safpe 1o 8 —
81yt 8/ecT 8/00¢
sobpe 1o 0g S36pe 1o gg
wioo'} npe9
sobps 1no 6
8/0TC ey
sebpa 10 22
npae
8/60C
8/66T
safps 1no 0T
89T
safpe 1o 6§
npeo
sebpe 10 0T
8/LT
'SoBpo 10 6T s3fpe o ¢
8/L2T 8/6€

S96pe N0 95 $36pe 10 82

npep npaq

safps 1no T¢
8/ELT
safpe 1o £
8/ES

Safips 1o TT

8/.02

safpe 1n0 0g
8/2LT
safipe 100 OT

8/0cT

16

