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Abstract

This honours thesis demonstrates the need for an automated, anomaly-
based Internet worm detection system that is effective at identifying Internet
worm packets with a low false-positive rate.

The theory of general Discrete Symbol Hidden Markov Models and the
theory of the equivalent on-line models is discussed, and the general struc-
ture of Hidden Markov Models is related to the problem of identifying In-
ternet worm packets in a sequence of normal network packets.

The effectiveness of various on-line Hidden Markov Model configurations
in detecting Sapphire Internet worm packets in a sequence of normal UDP
packets is evaluated, demonstrating that Hidden Markov Models can be
successfully used as the basis of an automated, anomaly-based Internet worm
detection system.
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Chapter 1

Introduction

1.1 Internet Worms

Worms1 are programs that propagate over computer networks, replicating as
they go. Experiments with worms were first performed in the early 1980s [27]
and the first worm to cause wide-spread “damage” was released onto the
Internet in 1988 [30].

Internet worms are capable of causing damage in three main ways –
firstly, through the economic cost of loss of services due to their consumption
of bandwidth, and through the cost associated with identifying and cleaning
infected systems. The global economic impact of just one such Internet worm
– Code Red – was estimated to be U.S.$2.62 billion in 2001 [33].

Secondly, Internet worms may allow infected systems to be accessed
remotely, circumventing authentication systems and resulting in the com-
promise of sensitive or proprietary data [31].

Thirdly, there is the potential for Internet worms to cause loss of life
through the interruption of critical computer systems – for example, by
interrupting the operation of nuclear power plant safety monitoring sys-
tems [24].

It is therefore clear that the threat of Internet worms must be taken
seriously.

Simulations of Internet-wide cooperative responses to Code Red-style
worm attacks have shown that if techniques requiring knowledge of how the
worm works – in this case, packet-based content filtering – are used to try
to prevent infections, the response must happen within around 2 hours of
the worm being released [20].

However, the recent Sapphire worm infected more than 90% of vulnerable
hosts on the Internet in less than 10 minutes [19], and there are techniques
that the Sapphire worm did not use – such as partitioning the IP address

1From John Brunner’s 1975 science fiction novel “The Shockwave Rider.”
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space so that scanning and infection of hosts is performed in a controlled
fashion – that could increase the speed of infection even further [31].

1.2 Intrusion Detection

It seems reasonable to assume that the likelihood of an Internet-wide re-
sponse system that is capable of reacting to a new worm in less than 10
minutes being deployed at any time in the near future is low. Thus, it
would seem, individuals and organisations must assume the responsibility of
protecting themselves from the potential damage of Internet worms, and/or
minimizing the spread of worms to and from their computers – but how
should they do this?

Knowing the potential speed with which hosts can become infected, it
seems clear that some kind of “Early Bird” automated intrusion detection
system is required to catch the worm.

Intrusion detection is the process of “detecting inappropriate, incorrect,
or anomalous activity” [17]. There are two main approaches to intrusion
detection. The first, called misuse detection, is to construct an expert system
that knows about certain types of attacks (in the case of Internet worms, it
may know about worm packet signatures, for example). The expert system
then tries to match observed behaviour to these rules. Unfortunately, as
outlined above, the potential speed with which worms can infect hosts on
the Internet means that it may not be possible to create and implement such
expert system rules before all vulnerable hosts have been infected.

The second approach to intrusion detection is called anomaly detection.
This approach attempts to classify what is “normal” behaviour for a system,
and to flag deviations from this behaviour as anomalous.

In the case of an individual or organisation trying to detect Internet
worms as anomalous behaviour, it seems logical to look at the local network
traffic going to/from a computer or passing through a corporate firewall –
in essence, building an anomaly-based network intrusion detection system.

1.3 Requirements for an Anomaly-Based Network
Intrusion Detection System

The requirements for an anomaly-based network intrusion detection system
for Internet worms are:

• The system must be on-line: that is, it needs to be able to monitor the
network traffic in real time, and react as anomalies are found. There
is little point in detecting an Internet worm infection from logged data
days after the infection has occurred.

2
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• The system should ideally recognise that network packets are not dis-
crete events, but are interrelated. Such recognition should allow better
detection of anomalies [32].

• Minimal training of the intrusion detection system is desired. (System
administrators want “plug and work” software – not systems they need
to spend weeks setting up.)

• The system should be able to process information quickly, so that the
speed at which packets are delivered is not adversely affected.

• The system should be able to accurately and consistently detect anoma-
lous packet traffic associated with Internet worms. A low false-positive
rate is desirable – many network administrators tend to ignore warn-
ings if there are too many false-positives [1]. (False-positives in this
domain would be network traffic classified as Internet worm data when
in fact it is valid, non-worm traffic.)

• The system should be able to protect either an individual machine,
or, by running on a corporate network firewall, an entire network of
machines.

1.4 Previous Work in the Field of Anomaly-Based
Intrusion Detection Systems

Obviously, anomaly-based intrusion detection systems do not need to be
limited to the analysis of network traffic. For example, so-called misuse
detection systems are anomaly-based systems that look at the various com-
mands that a user issues to a computer to detect either unauthorized use
by that user, or to detect deviations from that user’s expected behaviour,
perhaps indicating that the user’s password has been compromised, and that
another person is using their account.

Various techniques have been used in building successful misuse detection
systems. These include Artificial Neural Networks [26] (ANNs) and Hidden
Markov Models [15, 16] (HMMs).

It would seem reasonable to conclude from this that these two techniques
might also have application in the field of anomaly-based network intrusion
detection systems.

1.5 Previous Work in the Field of Anomaly-Based
Network Intrusion Detection Systems

ANNs have been applied to the task of anomaly-based network intrusion
detection [6, 7, 10], as has the technique of signal analysis [3].

3
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Another technique, using the concept of an activity graph has been used
to build two anomaly-based network intrusion detection systems, built with
Internet worms in mind. These systems are GrIDS2 and the system de-
scribed in [32].

The GrIDS system attempts to track the “flow” of Internet worm connec-
tions from host to host [8]. When the pattern of these connections exceeds
set thresholds, the activity is considered anomalous, and so the machines
involved in the activity graph can be considered to be infected. The system
described in [32] uses a similar system to detect the spread of worms via
their connection history.

However, both of these systems rely on the ability of individual machines
to report connection information to a centralised point for analysis. This
precludes the protection of systems that can not run the reporting software
required, or systems that have been installed without ensuring the software
is installed. They also both rely on the existence of a network of systems
that can be monitored – protection for individual machines is not possible.
Thus, such a system does not meet the requirements outlined above, that
such individual machine protection be provided.

There is no evidence in the literature that HMMs have been used to
attempt to detect Internet worms in network traffic, despite their successful
application in misuse detection.

1.6 Would a Hidden Markov Model be Suitable
as the Basis of an Anomaly-Based Network
Intrusion Detection System?

It would seem that an HMM might be suitable as the basis of an anomaly-
based network intrusion detection system, for the following reasons:

• HMMs have on-line algorithms [14, 28], which would allow a system
based on an on-line HMM to not only process packets as they arrive,
but also to perform model training while they are run, resulting in
minimal training for system administrators.

• The structure of HMMs [25] means that consideration of the interre-
lated nature of network packets is built into the model.

Of course, the effectiveness of such a system in detecting Internet worms,
and the speed with which such a system could process packets would need
to be determined.

2http://seclab.cs.ucdavis.edu/arpa/grids/
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1.7 Statement of Purpose and Organisation of The-
sis

Given that there is no known literature on the use of HMMs in the field
of anomaly-based network intrusion detection, and given their previously
successful application to the similar field of misuse detection, there is scope
for research in this area.

The purpose of this study is to determine if HMMs can be used as the
basis of an anomaly-based network intrusion detection system for Internet
worms, and if so, whether or not the system meets the requirements for
speed and consistent, accurate detection of worms without false-positives.

The remainder of this thesis is organised in the following way:

• Chapter 2 covers the necessary theoretical background of HMMs, and
the various algorithms required to train and use the models. The
details of Internet worms and the design of an anomaly-based network
intrusion detection system using HMMs as the basis are also outlined.

• Chapter 3 covers the implementation of an HMM system, and details
the experiments performed to verify the implementation.

• Chapter 4 outlines HMM configuration experiments performed, allow-
ing a model for detecting UDP-based Internet worms to be designed.

• Chapter 5 covers the results of experiments performed to test the
model designed in Chapter 4 for its ability to detect an UDP-based
Internet worm.

• Chapter 6 covers the conclusions that can be drawn from the experi-
ments, and outlines suggestions for further study in this field.

5
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Chapter 2

Background Information

2.1 Discrete Symbol Hidden Markov Models

The Hidden Markov Model (HMM) is one of a group of simplified Bayesian
Networks called Dynamic Bayesian Networks [11], which can be applied to
the task of modeling time series data. In the following discussion, where
appropriate, the notation of [25] has been adopted.

HMMs have the following four assumptions:

1. For a finite sequence of observations O1:T = O1, O2, . . . , OT there is
some process that has a finite sequence of hidden (i.e. non-observable)
states Q1:T = q1, q2, . . . , qT that is responsible for the generation of
these observations. Thus, Ot represents the observation at time t,
while qt represents the hidden state of the process at time t.

2. The hidden states of the process satisfy the First-Order Markov Prop-
erty. That is, the hidden state qt is dependent only on the previous
hidden state qt−1. This is equivalent to saying that “the state at some
time encapsulates all we need to know about the history of the process
in order to predict the future of the process” [11].

3. An observation Ot is assumed to be dependent only on the process’
current hidden state (i.e. qt).

4. The possible values that each state qt can assume are discrete. Here,
the set of possible states is {S1, S2, . . . , SN}.

These assumptions allow the joint probability of a sequence of states Q1:T

and a sequence of observations O1:T to be factored as:

P (Q1:T , O1:T ) = P (q1) P (O1|q1)
T∏

t=2

P (qt|qt−1) P (Ot|qt) (2.1)

6
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Figure 2.1: Graphical representation of a Hidden Markov Model. Modified
from [11].

This joint probability is represented graphically in Figure 2.1.
In order to be able to use an HMM, it is necessary to know some details

of the model. Specifically, the following are required:

1. An N ×N transition matrix that allows P (qt|qt−1) to be determined.
This transition matrix is often given as:

A =


a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
...

aN1 aN2 · · · aNN


where aij represents the probability of transitioning from a state qt =
Si to state qt+1 = Sj . Clearly, the sum of each row in the transition
matrix A must be unity, i.e.

∑N
j=1 aij = 1 ∀ i. Generally, HMMs also

have an egodic property that aij > 0 ∀ i, j, which means that for every
state it is possible to transition to all other states.

2. A similar N × M observation matrix that allows P (Ot|qt) to be de-
termined, given discrete observations in the set {1, 2, . . . ,M}. That
is:

B =


b11 b12 · · · b1M

b21 b22 · · · b2M
...

...
...

bN1 bN2 · · · bNM


where bij represents the probability of observing Ot = j given qt = Si.
Again,

∑M
j=1 bij = 1 ∀ i. It is common to replace the matrix B in

various formulae with a probability mass function (p.m.f.) b(·) = bi(j)
of the same properties.

7
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3. An initial state from the set {S1, S2, . . . , SN} for q1. Thus, an initial
state distribution set π = {πi} where πi = P (q1 = Si), 1 ≤ i ≤ N , is
needed.

It is generally assumed for HMMs that the two matrices are time invari-
ant, which vastly simplifies the model.

These three elements, A, b(·) and π define a discrete symbol HMM, which
is often given as λ = (A, b(·), π).

2.2 Discrete Symbol Hidden Markov Model Algo-
rithms

HMMs have two main algorithm classes – inference and learning (or train-
ing) [11]. Here, an algorithm of each class is examined.

2.2.1 Inference Using the Forward-Backward Algorithm

One way that an HMM can be used is to calculate the probability of ob-
serving the finite sequence of observations O1:T . It is possible to calculate
the probability by considering all possible sequences of states Q1:T .

For example, consider one such sequence Q1:T . In this case:

P (O1:T |Q1:T , λ) =
T∏

t=1

P (Ot|qt, λ)

=
T∏

t=1

bqt(Ot) (2.2)

Consider also that the probability of the sequence Q1:T occurring is:

P (Q1:T |λ) = P (q1)
T∏

t=2

P (qt|qt−1, λ)

= πq1

T∏
t=2

aqt−1qt (2.3)

Thus, given the assumed independence of the states and observations,
it is possible to state that the probability of the observation sequence O1:T

occurring simultaneously with the sequence of states Q1:T is the product of
the two probabilities:

P (O1:T , Q1:T |λ) = P (O1:T |Q1:T , λ) P (Q1:T |λ) (2.4)

8
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(Note that Equation 2.4 is equivalent to Equation 2.1.)
Finally, as mentioned above, the probability of observing the sequence

O1:T can be obtained by considering all possible sequences of states. Thus,
from Equation 2.4:

P (O1:T |λ) =
∑

all Q1:T

P (O1:T |Q1:T , λ) P (Q1:T |λ) (2.5)

By substituting Equation 2.2 and Equation 2.3 into Equation 2.5 the general
result is obtained:

P (O1:T |λ) =
∑

all Q1:T

(
πq1 bq1(O1)

T∏
t=2

aqt−1qt bqt(Ot)

)
(2.6)

Unfortunately, Equation 2.6 is of order 2T×NT [25], which is intractable
for large sequences of observations. Fortunately, the Forward-Backward al-
gorithm – a special case of the belief propagation algorithm for Bayesian
Networks [11, 29] – provides a better way of calculating the probability of
observing the sequence of observations O1:T .

As the name suggests, the Forward-Backward algorithm has two stages
– a forward pass and a backward pass.

In the forward pass, the value of αt(i) = P (O1:t, qt = Si|λ) is solved in
two stages:

1. Firstly, the values of α1(i) are initialised:

α1(i) = P (O1, q1 = Si|λ)

= πi bi(O1)

That is, for all possible states i = {S1, S2, . . . , SN} that q1 could as-
sume, α1(i) is set to the probability of being in state Si with the
required observation O1.

2. Secondly, an induction step is used to calculate the probabilities of
reaching all successive states with the required observation:

αt(i) =

 N∑
j=1

P (O1:t−1, qt−1 = Sj |λ) P (qt = Si|qt−1, λ)


× P (Ot|qt = Si, λ)

=

 N∑
j=1

αt−1(j) aji

 bi(Ot) (2.7)

9
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Figure 2.2: The induction step of the forward pass of the Forward-Backward
algorithm. Modified from [25].

That is, for all possible states i = {S1, S2, . . . , SN} that qt could as-
sume where 1 < t ≤ T , the probability of reaching each state with the
required observation sequence (so far) of O1:t is the product of observ-
ing Ot given the state qt and the sum of the product of the probabilities
of reaching all the preceding hidden states with the required observa-
tion sequence and the probability of transitioning from each of these
states to the state qt. This step is represented in Figure 2.2.

Once the forward pass is completed, it is possible to determine the prob-
ability of observing the sequence O1:T by summing all the terminal αT (i)
values:

P (O1:T |λ) =
N∑

i=1

αT (i)

The forward pass illustrates the point mentioned earlier that each state
contains the history of the process – as can be seen here, at each induc-
tion step of the forward pass, the probabilities of the previous states are
combined. The forward pass algorithm is of order N2T [25].

As may be expected, the Forward-Backward algorithm also has a back-
ward pass. While the backward pass is not required for the solution of the
problem of calculating the probability of observing the finite sequence of
observations O1:T , it is required as part of the training algorithm discussed
later, and so is considered here.

The backward pass operates in a similar manner to the forward pass,
and calculates the value of βt(i) = P (Ot+1:T |qt = Si, λ) – that is, given the
value of a hidden state at time t, it calculates the probability of observing

10
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Figure 2.3: The induction step of the backward pass of the Forward-
Backward algorithm. Modified from [25].

the (partial) observation sequence Ot+1:T . The two stages of the backward
pass are:

1. Firstly, the values of βT (i) are initialised:

βT (i) = 1

That is, for all possible states i = {S1, S2, . . . , SN} that qT could
assume, βT (i) is arbitrarily set to 1.

2. Secondly, the following induction step is used:

βt(i) =
N∑

j=1

P (Ot+2:T |qt+1 = Sj , λ) × P (qt+1|qt = Si, λ)

× P (Ot+1|qt+1, λ)

=
N∑

j=1

βt+1(j) aij bj(Ot+1) (2.8)

That is, for all possible states i = {S1, S2, . . . , SN} that qt could as-
sume where 1 ≤ t < T , the probability of observing the (partial)
observation sequence Ot+1:T is the product of the probability of tran-
sitioning from state qt = Si to state qt+1, the probability of observing
Ot+1 given qt+1 and the probability of the remaining partial sequence.
This step is represented in Figure 2.3.

11
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The backward pass algorithm is also of order N2T [25].
Finally, it is important to note that because αt(i) represents the proba-

bility of reaching state qt = Si having observed the (partial) sequence O1:t

and that βt(i) represents the probability of observing the sequence Ot+1:T

given that qt = Si, then:

P (O1:T ) =
N∑

i=1

αT (i)

=
N∑

i=1

αt(i) βt(i) (2.9)

2.2.2 Training Using the Baum-Welch Method

One of the hardest parts of building an HMM is determining how to set
the two transition matrices and the initial state distribution π so that the
probability of the observation sequence O1:T is maximized – in other words,
there has to be some way to train the HMM on valid observation sequences
so that the model can be used for inference later on. The Expectation-
Maximization algorithm is one such way of allowing the updated parameters
of an HMM after training to be estimated [12]. The algorithm follows from
the definition:

Q(λ̄|λ) = E { P (Q1:T , O1:T |λ̄) | λ, O1:T } (2.10)

where Q is a function to maximize the expected probability E of the state
and observation sequences Q1:T , O1:T of the trained HMM, λ̄, given then
existing model λ and the sequence of observations.

Unfortunately, this function is intractable [12], and so is normally only
approximated. Here, the Baum-Welch method of approximating the new
model is examined. The Baum-Welch method is equivalent to the Expectation-
Maximization method for training Bayesian Networks, except that it allows
the states of the model to be hidden [4, 9].

Firstly, γt(i) is defined as the probability of the hidden state qt being
equal to Si, given the observation sequence O1:T :

γt(i) = P (qt = Si|O1:T , λ)

=
P (qt = Si, O1:T |λ)

P (O1:T |λ)

As previously discussed, αt(i) represents the probability of reaching state
qt = Si having observed the (partial) sequence O1:t and that βt(i) represents

12
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Figure 2.4: Graphical representation of the derivation of ξt(i, j) in the Baum-
Welch method. Modified from [25].

the probability of observing the sequence Ot+1:T given that qt = Si. Thus:

γt(i) =
αt(i) βt(i)
P (O1:T |λ)

(2.11)

By substituting Equation 2.9 into Equation 2.11:

γt(i) =
αt(i) βt(i)∑N

j=1 αt(j) βt(j)
(2.12)

Secondly, ξt(i, j) is defined as the probability of the hidden state qt being
equal to Si, and state qt+1 being equal to Sj , given the observation sequence
O1:T :

ξt(i, j) = P (qt = Si, qt+1 = Sj |O1:T , λ)

=
P (qt = Si, qt+1 = Sj , O1:T |λ)

P (O1:T |λ)
(2.13)

By substituting the forward and backward pass values from the Forward-
Backward algorithm into Equation 2.13, the following is obtained:

ξt(i, j) =
αt(i) aij bj(Ot+1) βt+1(j)∑N

i=1

∑N
j=1 αt(i) aij bj(Ot+1) βt+1(j)

(2.14)

The derivation of Equation 2.14 can be seen graphically in Figure 2.4.
Note that the two values γt(i) and ξt(i, j) can be related by summing

over the possible values of j:

γt(i) =
N∑

j=1

ξt(i, j)

13



Early Bird: Catching worms while sysadmins sleep

The sum over time (1 ≤ t < T ) of γt(i) represents the number of transitions
from a state with value Si, while the sum over time (1 ≤ t < T ) of ξt(i, j)
represents the number of transitions from a state with value Si to a state
with value Sj .

The Baum-Welch re-estimation formulae are given by the following:

• The new value for aij , i.e. āij , is the expected number of transitions
from a state with value Si to a state with value Sj , divided by the
total number of transitions from a state with value Si.

• The new value for bi(j), i.e. b̄i(j), is the expected number of times the
model is in a state with value Si (which is equivalent to the sum over
time (1 ≤ t ≤ T ) of γt(i)) and the observation j is observed, divided
by the expected number of times the model is in a state with value Si.

• The new value for πi, i.e. π̄i, is the expected frequency of q1 = Si.

Thus:

āij =
∑T−1

t=1 ξt(i, j)∑T−1
t=1 γt(i)

=

∑T−1
t=1

(
αt(i) aij bj(Ot+1) βt+1(j)∑N

i=1

∑N
j=1 αt(i) aij bj(Ot+1) βt+1(j)

)
∑T−1

t=1

(
αt(i) βt(i)∑N
i=1 αt(i) βt(i)

)

=
∑T−1

t=1 αt(i) aij bj(Ot+1) βt+1(j)∑T−1
t=1 αt(i) βt(i)

(2.15)

b̄i(j) =
∑T

t=1 γt(i) bi(j)∑T
t=1 γt(i)

π̄i = γ1(i)

The new HMM λ̄ = (Ā, B̄, π̄) has been shown to be equivalent to the
previous HMM, or more likely to produce the observation sequence Q1:T [2,
5]. Thus, this re-estimation process can be used to train an HMM given one
or more sample sequences of observations1.

1It is important to note that as γ1(i) and ξt(i, j) are calculated using the Forward-
Backward algorithm – which leads to local, not global, maxima [25]. Thus, if the initial
HMM is created using random variables, it may be necessary to train and test more than
one HMM in order to obtain the “best” HMM.
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2.3 On-line Discrete Symbol Hidden Markov Mod-
els

On-line HMMs [14] are a form of HMM that allow the model to be used and
trained at the same time, thus alleviating the requirement of obtaining data
and training the model before predictions of observation sequences can be
obtained.

However, this means that for each observation, while the probability
of the observation can be calculated, a new model estimate will also be
obtained. Thus, the “model” will actually consist of a series of model es-
timates, ΛT = (λ1, λ2, . . . , λT ), where λt = (A(t), bi(t, ·)), A(t) = {aij(t)}.
(Here, the value of π for each model has been ignored, as it is only required
for λ0 in the following algorithms.)

2.4 On-line Discrete Symbol Hidden Markov Model
Algorithms

Due to the fact that an on-line HMM is actually a series of models, the
previous methods for inference and training are no longer suitable, and new
methods must be examined.

2.4.1 Inference Using the On-line Forward-Backward Algo-
rithm

Given the definition of an on-line HMM above, the definitions of αt(i) and
βt(i) for standard HMMs can be updated to αt|Λt−1

(i) and βt|λt−1
(i), given

an initial model λ0:

α1|Λ0
(i) = πi bi(0, O1)

αt|Λt−1
(i) =

 N∑
j=1

αt−1|Λt−2
(j) aji(t− 1)

 bi(t− 1, Ot)

βT (i) = 1 (2.16)

βt|λt−1
(i) =

N∑
j=1

βt|λt−1
(j) aij(t− 1) bj(t− 1, Ot+1)

It is worth noting that for on-line HMMs, it is standard practice to
have a p.m.f. b(t, ·) that only accounts for those observations that have
actually been observed up to time t. This is in contrast with standard
HMMs, where the B array is fully populated before use and training of the
HMM commences.
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While it is clear that the values of αt|Λt−1
(i) for a sequence of HMMs

ΛT can be calculated as the models are “developed” (trained), it should
also be clear that the values of βt|λt−1

(i) can not be obtained as the models
are developed, as these values rely on the complete sequence of observations
Ot+1:T (and therefore, the complete sequence of HMMs Λt−1) to be known.
Thus, the method of training an on-line HMM must differ from that of the
standard HMM.

2.4.2 On-line Training via the Fisher Information Matrix

Just as for the normal HMM, training an on-line HMM requires a technique
for the approximation of the Expectation-Maximization algorithm (Equa-
tion 2.10).

Firstly, by replacing the αt|Λt−1
(i) and βt|λt−1

(i) values above into Equa-
tion 2.12 and Equation 2.14 for αt(i) and βt(i), the on-line HMM definitions
of γt|Λt−1

(i) and ξt|Λt−1
(i, j) can be obtained [14]:

γt|Λt−1
(i) =

αt|Λt−1
(i) βt|λt−1

(i)∑N
j=1 αt|Λt−1

(j) βt|λt−1
(j)

ξt|Λt−1
(i, j) =

αt|Λt−1
(i) aij(t− 1) bj(t− 1, Ot+1) βt+1|λt−1

(j)∑N
i=1

∑N
j=1 αt|Λt−1

(i) aij(t− 1) bj(t− 1, Ot+1) βt+1|λt−1
(j)

Secondly, two new values are defined [14, 28]:

µt(i, j) =

∑t
k=1 ξk|Λk−1

(i, j)
aij(t)2

(2.17)

gt(i, j) =
ξt(i, j)
aij(t)

Via the use of the Fisher Information Matrix (FIM), an algorithm for
the update of the A matrix can be defined as [14, 28]:

āij(t + 1) = āij(t) +
1

µt(i, j)
×

gt(i, j)−

∑N
j′=1

gt(i, j′)
µt(i, j′)∑N

j′=1

1
µt(i, j′)


Similar use of the FIM results in two update algorithms for the p.m.f.

b(t, ·) [28]. Firstly, the p.m.f. for observations n ∀ n 6= Ot are updated:

b̄i(t, n) = b̄i(t− 1, n)− bi(t− 1, Ot)×

(
γt|Λt−1

(i)∑t
k=1 γk|Λk−1

(i)

)

×


bi(t, n)2∑t

k=1 γk|Λk−1
(i)∑M

p=1

(
bi(t, p)2∑t

k=1 γk|Λk−1
(i)

)
 (2.18)
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Secondly, the p.m.f. for the observation n = Ot is updated:

b̄i(t, n) = 1−
M∑

p6=n

b̄i(t, p)

Note the use of βt|λt−1
(i) values in these definitions means that, as noted

above, the complete observation sequence O1:T is required to calculate these
values. In order to overcome this problem, two types of on-line HMM are
considered – filtering and fixed lag.

2.4.3 Filtering On-line Hidden Markov Models

A filtering on-line HMM simply assumes that the sequence of observations
O1:T is a sequence on one observation. Thus, at each time interval, the
model is updated using a single observation in isolation. As a result of
Equation 2.16, this means that β1(i) = 1 is used for all update algorithms.

2.4.4 Fixed Lag On-line Hidden Markov Models

A fixed lag on-line HMM at time t = k assumes a finite sequence Ok:k+∆,
where ∆ > 0 is the lag [14]. By knowing the next ∆ observations, the
βt|λt−1

(i) values can be calculated as if Ok:k+∆ was the complete sequence
of observations.

Obviously, if ∆ was equal to 0, then the model would in fact be a filtering
on-line HMM.

2.5 Adding Forgetting to On-line Hidden Markov
Models

As the FIM sometimes results in a too rapid convergence of the on-line
HMM, it is desirable to add forgetting to an on-line HMM, so that the effect
of past learning is reduced with respect to newer learning [14].

The forgetting factor 0 < ρ ≤ 1, where ρ = 1 means no forgetting, is
added to Equation 2.17 resulting in:

µt(i, j) =

∑t
k=1 ρt−k ξk|Λk−1

(i, j)
aij(t)2

The forgetting factor is also added to Equation 2.18 by changing the
three occurrences of the summation of γ to:

t∑
k=1

ρt−k γk|Λk−1
(i)
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Number of Bits Field
4 IP Version
4 IP Header Length
8 Type of Service
16 Total IP Datagram Length
16 Identification
3 Control Flags
13 Fragment Offset
8 Time to Live
8 Protocol
16 Header Checksum
32 Source Address
32 Destination Address

Variable Options
Variable Data

Table 2.1: The Internet Protocol version 4 datagram format [23].

2.6 Internet Worms

For an Internet worm to cause extensive damage, it must be capable of
propagating widely over the Internet. This restricts Internet worms to using
packets (or datagrams) from one of two main protocols – the Transmission
Control Protocol (TCP) [21] or the User Datagram Protocol (UDP) [22].
Both of these protocols generally run (at present) over the Internet Protocol
(IP) version 4 [23], that is, the data field of an IP datagram can be a TCP
or UDP datagram. The details of the datagram structure of these three
protocols can be seen in Table 2.1, Table 2.2, and Table 2.3.

The datagram field values (excluding the data fields) are restricted to a
finite set of discrete values, and could therefore be considered as observations
for a discrete symbol HMM.

Note, however, that not all of this information is likely to be useful in the
process of identifying Internet worm packets. For example, the checksum
headers can safely be discarded from consideration, as packets with bad
checksums should be discarded by the network interface, meaning there is
little point in an Internet worm sending packets with bad checksums. The
TCP and UDP data field is also unlikely to be useful as an HMM observation
symbol, partially due to its potentially very large discrete space, and also
due to its variable length.
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Number of Bits Field
16 Source Port
16 Destination Port
32 Sequence Number
32 Acknowledgment Number
4 Data Offset
6 Reserved
8 Control Bits
16 Windows Size
16 TCP Checksum
16 Urgent Pointer

Variable Options
Variable Data

Table 2.2: The Transmission Control Protocol datagram format [21].

Number of Bits Field
16 Source Port
16 Destination Port
16 Total UDP Datagram Length
16 UDP Checksum

Variable Data

Table 2.3: The User Datagram Protocol datagram format [22].

2.7 Design of an Anomaly-Based Network Intru-
sion Detection System Based on Hidden Markov
Models

Given the above information about HMMs and Internet worms, an anomaly-
based network intrusion detection system for Internet worms based on the
standard, discrete symbol HMM appears to be a less than ideal solution.
The HMM’s requirement for a B matrix of dimensions N ×M could be very
large, even with a small number of states, due to the potentially large size
of M .

For example, if the system was designed to attempt to detect Internet
worms based only on the source and destination ports of packets, the ob-
servations would be represented by a single 32-bit integer. To build the B
matrix in the obvious way (using an actual matrix), this would be the upper
limit of possible observation data that could be used, as most programming
languages today will only allow the index of such structures to be a 32-bit in-
teger. Thus, trying to detect Internet worms using more information about
the packets would not be possible. Indeed, some HMM implementations
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(such as UMDHMM [13]) crash when trying to use such a range of symbols.
Also, building a system using a standard HMM would require that the

system be fully trained with data, and preferably tested, before it can be
used to try to detect Internet worms. Such a system would therefore fail
to meet the requirements stated above, that is, that minimal training is
desired.

On consideration, an on-line discrete symbol HMM seems a better choice
for building an anomaly-based network intrusion detection system for Inter-
net worms. As the B matrix only needs to deal with observation symbols
that have actually been seen, it would seem logical to implement the matrix
as some kind of hash table, adding in probability rows for observations as
required. Provided the key to the table can exceed 32-bits, then using more
information than just, for example, the TCP/UDP datagram port numbers
would also be possible.

Finally, as the system is on-line, training of the system would be able to
be carried out at the same time as it was in use, freeing system administra-
tors from the time consuming task of training and testing the system.

20



Early Bird: Catching worms while sysadmins sleep

Chapter 3

Implementation of an On-line
Hidden Markov Model

3.1 Implementation

As no implementation of an on-line Hidden Markov Model (HMM) was freely
available, a system was implemented in Java1. The system supports both
filtering and fixed lag modes, as well as forgetting, as described in Chapter 2.

Important features of the implementation that are generally ignored by
the literature are:

• An HMM is initialised with random values for the π and A matrices,
using a supplied pseudo-random number generator (PRNG) seed so
that results can be reproduced. Each probability row is normalised to
ensure a sum of unity. An initial minimum probability value is also
enforced, ensuring that the model is egodic.

• The B matrix is initially empty, and columns for observations are
only added as the symbols are seen. When a new symbol is seen,
the probability for each state in that symbol’s column is set to the
initial minimum probability value, and the matrix is re-normalised to
ensure that each probability row again has a sum of unity. The use
of the initial minimum probability value, instead of a random value,
allows convergence of the B matrix values to occur much more rapidly,
especially when new observations are encountered often.

• During training, the α and β are normalised after calculation for each
step [18, 25], as are the γ and ξ values. Once updated, the A and B
matrices are also normalised.

• The fixed lag mode of operation returns a probability of zero for all
observations until at least ∆ observations have been seen, as this many

1http://java.sun.com/
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past observations are required to correctly calculate the probability
using the forward pass of the Forward-Backward algorithm.

• In order to reduce the possibility of divide-by-zero errors due to near-
zero probability values in the A matrix, µt(i, j) (Equation 2.17) is
actually calculated as 1

µt(i,j)
.

The implementation uses a Java Hashtable to store the B matrix, so that
observation symbols can be used as index keys. This allows simple observa-
tion column lookups when calculating the expected probability of a sequence
of symbols using the forward pass of the Forward-Backward algorithm, as
well as similarly simple updates of the matrix. However, normalisation of
the matrix requires the reconstruction of each row and the storage of the
normalised row back into the table again. This aspect of the implementation
could be improved upon.

3.2 Verification of Implementation

As a verification of the implementation, a two-state, two-observation HMM
was constructed with the following matrices:

π =
[

0.5 0.5
]

A =
[

0.8 0.2
0.45 0.55

]
B =

[
0.8 0.2
0.45 0.55

]
This model was used to generate a sequence of observations, which were then
used to train two new, randomly initialised two-state, two-symbol models,
one with ∆ = 0 and ρ = 0.99, and the other with ∆ = 5 and ρ = 0.99. As
the training was performed, the values of the A and B matrix entries were
recorded.

Figure 3.3 shows the four A matrix values for the HMM with ∆ = 5,
which are clearly converging on the original model’s values as the training
progresses.

Figure 3.1 shows the four A matrix values for the HMM with ∆ =
0, while Figure 3.2 and Figure 3.4 show the four B matrix values for the
two models. While these three graphs show the A and B matrix values
are converging, the values that they are converging on are close to, but
not exactly the same as, the original matrix values. However, it would
appear that the results are sufficiently close to the original values for the
implementation to be considered valid [14, 28].
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Figure 3.1: Convergence of the state transition probability matrix, ∆ = 0.
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Figure 3.2: Convergence of the observation probability matrix, ∆ = 0.
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Figure 3.3: Convergence of the state transition probability matrix, ∆ = 5.
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Figure 3.4: Convergence of the observation probability matrix, ∆ = 5.
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Chapter 4

On-line Hidden Markov
Model Configuration
Experiments Toward the
Design of a Model for UDP
Internet Worm Detection

4.1 The Relationship Between Hidden Markov Mod-
els and Internet Packets

As discussed in Section 1.6, the structure of a Hidden Markov Model (HMM)
is able to take into account the interrelated nature of Internet packets. At
this point, it is worth examining this idea further.

Recall that an HMM is a model of a process with a finite sequence of
hidden states, generating a finite sequence of observations. Given that a
computer connected to the Internet will generate a sequence of TCP/IP or
UDP/IP datagrams (both sent and received), some of which will be valid
– or “normal” – network packets, and some of which will be undesirable
Internet worm packets, it seems obvious to consider the sequence of packets
as an HMM’s sequence of observations.

Obviously, such a model would need to have some way of representing
the packet observations. As mentioned in Section 2.6, TCP/IP and UDP/IP
datagrams consist of a number of different fields – thus, some combination
of these fields can be thought of as the observation for packets.

However, if datagram fields are assumed to be the observations, then
what is the model’s finite hidden-state sequence process? This process can
be considered to be some abstract “Internet-wide” process that is responsible
for determining what packets are sent to and from a computer. The number
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of states of the HMM represents, in some way, the number of states required
to model this abstract, Internet-wide process. There may be many or few
states, but provided the model is able to predict normal, non-Internet worm
packets in a packet sequence with a high probability, and predict Internet
worm datagrams with a low probability, it is not important how many states
the model has.

4.2 Collection of an Internet Datagram “Observa-
tion” Sequence

The TCP/IP or UDP/IP datagram header information of TCP/UDP data-
grams being sent both to and from a computer within the University of Ade-
laide’s School of Computer Science network was collected using the tcpdump1

utility. The packet data were then processed using a Perl2 script to gen-
erate TCP packet and UDP packet SDBM database files. (This database
format was selected simply on the basis that it was the only one available
on the machines allocated for use in this study.) These two database files
were used as the source of datagram observations as described above for the
experiments in this chapter and the next.

4.3 Observation Sequence Prediction Experiments

In order to determine what kind of HMM configuration might be useful
in detecting UDP-based Internet worms, a number of on-line HMMs with
different initialisation PRNG seeds, numbers of states, ∆ values (such that
∆ ≥ 0, so that both filtering and fixed lag models were included), and ρ val-
ues were trained and tested with sequences of datagram field observations
from the UDP packet database – the “observation sequences.” The obser-
vation sequences were all of length 500 datagrams, and started at random
positions in the database of packet data.

These experiments were performed in order to determine what effect
these HMM configuration parameters have on the model’s ability to predict
UDP observation sequences – or, more accurately, the effect they have on
the predicted probability of each packet in the observation sequences.

Note that the decision was made to limit these configuration experi-
ments, and the subsequent Internet worm experiments in Chapter 5 to the
UDP/IP protocols. This is because it is has been assumed that, as UDP is a
connectionless protocol, there is less information available to the model than
with TCP/IP observations, and so detecting UDP-based Internet worms is
harder than detecting TCP-based Internet worms.

1http://www.tcpdump.org/
2http://www.cpan.org/
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4.3.1 Effect of the Number of Hidden States

Models with different numbers of hidden states were tested. The initial-
isation PRNG seed, ∆ value, ρ value, random starting packet value, and
observation sequence length were kept constant for each model comparison
set. The observations used for all of these tests were the datagram source
and destination ports of the UDP datagrams.

One example set typical of the results obtained is shown in Figure 4.2
(two states), Figure 4.3 (eight states), Figure 4.4 (fourteen states), and
Figure 4.5 (twenty states).

It is clear from these experiments that there is little advantage in using
models with a large number of states – at least for the above observation
type – as there is little practical difference in the predicted probabilities of
the packets in the observation sequence.

4.3.2 Effect of the Value of ∆

Models with different ∆ values were tested. The initialisation PRNG seed,
number of hidden states, ρ value, random starting packet value, and obser-
vation sequence length were kept constant for each model comparison set.
The observations used for all of these tests were the datagram source and
destination ports of the UDP datagrams.

One example set typical of the results obtained is shown in Figure 4.2
(∆ = 1), Figure 4.6 (∆ = 5), Figure 4.7 (∆ = 20), Figure 4.8 (∆ = 50), and
Figure 4.9 (∆ = 100).

It is clear from these experiments that increasing the ∆ value of the
model results in smoother curves of the predicted probabilities of the pack-
ets in the observation sequence. This is not unexpected, as the probabilities
returned are based on the last ∆ observations, rather than just the sin-
gle observations. Thus, the effect of sharp probability peaks is reduced by
increased ∆.

4.3.3 Effect of the Value of ρ

Models with different ρ values were tested. The initialisation PRNG seed,
number of hidden states, ∆ value, random starting packet value, and obser-
vation sequence length were kept constant for each model comparison set.
The observations used for all of these tests were the datagram source and
destination ports of the UDP datagrams.

One example set typical of the results obtained is shown in Figure 4.6
(ρ = 0.99), Figure 4.10 (ρ = 0.95), Figure 4.11 (ρ = 0.80), Figure 4.12
(ρ = 0.50), and Figure 4.13 (ρ = 0.10).

It is clear from these experiments that as the value of ρ is decreased, the
model is less able to predict the observation sequence. This result is also
to be expected, because as ρ decreases, the model forgets previous learning
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more quickly, and so the model is increasingly less likely to be able to produce
a high probability value for each packet in the observation sequences that it
has previously learned about.

4.3.4 Effect of Different Observations

In order to confirm that no advantage in predicting the observation sequence
can be obtained by using HMMs with a large number of states, models with
different numbers of hidden states were again tested. As before, the initial-
isation PRNG seed, ∆ value, ρ value, random starting packet value, and
observation sequence length were kept constant for each model comparison
set. However, different observations from before were tested.

The observations tested were:

• UDP datagram source and destination addresses and ports.

• UDP datagram source and destination ports, and data field length.

• UDP datagram source and destination addresses, and data field length.

• UDP datagram source and destination addresses and ports, and data
field length.

• UDP datagram source and destination ports, and IP datagram iden-
tification field.

• UDP datagram source and destination addresses, and IP datagram
identification field.

• UDP datagram source and destination addresses and ports, and IP
datagram identification field.

• UDP datagram source and destination addresses and ports, and data
field length, and IP datagram identification field.

One example set typical of the results obtained using the UDP datagram
source and destination ports, and data field length as the observations can
be seen in Figure 4.14, Figure 4.15, Figure 4.16, and Figure 4.17.

Another example set typical of the results obtained using the UDP data-
gram source and destination addresses and ports, and data field length as
the observations can be seen in Figure 4.18, Figure 4.19, Figure 4.20, and
Figure 4.21.

These two example sets of results are typical of the results obtained using
other observation types (results not shown).

These results confirm that no apparent advantage in predicting the ob-
servation sequence can be obtained by using a large number of hidden states.
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Figure 4.1: Example model training times for HMMs with different numbers
of states and for different observation sequence lengths. ∆ = 5, ρ = 0.99,
trained with UDP datagram source and destination port observations. Ex-
ample demonstrated is a “near-worst case” observation sequence.

However, it is important to note that there is little practical difference
between these results and the results shown in Figure 4.2, Figure 4.3, Fig-
ure 4.4, and Figure 4.5. This demonstrates that increasing the level of
datagram field information used in packet observations does not result in an
increase in the predicted probability of the observation sequence.

Thus, very little packet data is likely to be required in an observation
for the model to operate effectively.

4.4 Implementation Speed Experiments

Models with two, eight, fourteen and twenty hidden states were trained with
observation sequence lengths ranging between 200 and 5000 datagrams, and
the time required to train each of the model/observation length combina-
tions recorded. The initialisation PRNG seed, ∆ value, ρ value and random
starting packet value were kept constant for each comparison set. The obser-
vations used for all of these tests were the datagram source and destination
ports of the UDP datagrams.

All timing measurements were made on an AMD Athlon XP 2200+ PC,
with 256MB RAM.
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4.4.1 Effect of the Observation Sequence Length

One example set typical of the results obtained can be seen in Figure 4.1.
These results clearly show that increasing the observation sequence length
results in a non-linear increase in the time required for the implementation
to train the model. (See Appendix A for an order analysis of the training
algorithms which supports this result by demonstrating a polynomial in-
crease in training speed with the number of different observations seen by
the model – the example results shown in Figure 4.1 have been obtained
using an observation sequence with almost no repeated observations, and
so is a “near-worst case” example of the increase in training time with the
observation sequence length.)

4.4.2 Effect of the Number of Hidden States

The results shown in Figure 4.1 also clearly show that increasing the number
of hidden states results in a non-linear increase in the time required for the
implementation to train the model. (See Appendix A for an order analysis
of the training algorithms supporting this result.)

4.5 Model Design

Based on the above results, it would seem that in order to be able to suc-
cessfully predict a sequence of UDP datagrams, an HMM should have the
following configuration:

1. Two hidden states, as no apparent advantage is gained by having more
hidden states, while there is a definite speed advantage in having fewer
states.

2. A ∆ value of around 20, to reduce the effect of probability spikes.
However, the value of ∆ is probably the model configuration parameter
most likely to affect the ability of an HMM to predict Internet worms,
because of its smoothing effect on probability spikes – something that
Internet worms will hopefully generate.

3. A ρ value of 0.99, as increasing the forgetting rate only leads to the
decreased ability of the model to predict a sequence of datagrams.

It would also seem that highly detailed information about the UDP data-
grams in the form of the model observations used is not required to predict
the packet sequence, and that the UDP datagram source and destination
ports will be sufficient as the datagram fields for packet observations.
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Figure 4.2: Example 2 state HMM with ∆ = 1, ρ = 0.99, trained with UDP
datagram source and destination port observations.
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Figure 4.3: Example 8 state HMM with ∆ = 1, ρ = 0.99, trained with UDP
datagram source and destination port observations.
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Figure 4.4: Example 14 state HMM with ∆ = 1, ρ = 0.99, trained with
UDP datagram source and destination port observations.
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Figure 4.5: Example 20 state HMM with ∆ = 1, ρ = 0.99, trained with
UDP datagram source and destination port observations.
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Figure 4.6: Example 2 state HMM with ∆ = 5, ρ = 0.99, trained with UDP
datagram source and destination port observations.
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Figure 4.7: Example 2 state HMM with ∆ = 20, ρ = 0.99, trained with
UDP datagram source and destination port observations.
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Figure 4.8: Example 2 state HMM with ∆ = 50, ρ = 0.99, trained with
UDP datagram source and destination port observations.
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Figure 4.9: Example 2 state HMM with ∆ = 100, ρ = 0.99, trained with
UDP datagram source and destination port observations.
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Figure 4.10: Example 2 state HMM with ∆ = 5, ρ = 0.95, trained with
UDP datagram source and destination port observations.
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Figure 4.11: Example 2 state HMM with ∆ = 5, ρ = 0.80, trained with
UDP datagram source and destination port observations.
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Figure 4.12: Example 2 state HMM with ∆ = 5, ρ = 0.50, trained with
UDP datagram source and destination port observations.
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Figure 4.13: Example 2 state HMM with ∆ = 5, ρ = 0.10, trained with
UDP datagram source and destination port observations.
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Figure 4.14: Example 2 state HMM with ∆ = 1, ρ = 0.99, trained with UDP
datagram source and destination ports, and data field length observations.
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Figure 4.15: Example 20 state HMM with ∆ = 1, ρ = 0.99, trained with
UDP datagram source and destination ports, and data field length observa-
tions.
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Figure 4.16: Example 50 state HMM with ∆ = 1, ρ = 0.99, trained with
UDP datagram source and destination ports, and data field length observa-
tions.
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Figure 4.17: Example 100 state HMM with ∆ = 1, ρ = 0.99, trained with
UDP datagram source and destination ports, and data field length observa-
tions.
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Figure 4.18: Example 2 state HMM with ∆ = 1, ρ = 0.99, trained with
UDP datagram source and destination addresses and ports, and data field
length.
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Figure 4.19: Example 20 state HMM with ∆ = 1, ρ = 0.99, trained with
UDP datagram source and destination addresses and ports, and data field
length.
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Figure 4.20: Example 50 state HMM with ∆ = 1, ρ = 0.99, trained with
UDP datagram source and destination addresses and ports, and data field
length.
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Figure 4.21: Example 100 state HMM with ∆ = 1, ρ = 0.99, trained with
UDP datagram source and destination addresses and ports, and data field
length.
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Chapter 5

Internet Worm Packet
Detection with an On-line
Hidden Markov Model

5.1 The Sapphire Internet Worm

The Sapphire (or Slammer) Internet worm exploits a buffer overflow bug in
the Microsoft SQL Server and SQL Server Desktop Engine services [19]. It
caused wide-spread congestion on the Internet in 2003.

The worm propagates by sending a single UDP packet to port 1434 on
randomly selected hosts [19]. The data field of the packet is 376 bytes [19].

5.2 Sapphire Worm Packet Detection Experiments
With Set “Attack” Periods

Given the above, and the model design of Section 4.5, it was decided that in
order to examine the ability of an anomaly-based network intrusion detection
system based on HMMs to detect Sapphire worm datagrams, a number of
on-line HMMs would be examined with the following properties:

• Various model initialisation PRNG seeds.

• Two hidden states.

• ∆ values between 1 and 50.

• A ρ value of 0.99.

These models were trained with observation sequences of length 6000
packets – longer observation sequences were not tested due to the polynomial
increase in training time required as the number of different observations
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seen by the model increases (see Section 4.4 and Appendix A). The UDP
source and destination ports were used as the datagram observations, and
were taken from the UDP packet database, with various random starting
packet values.

Each model was trained twice – once with just the observations from the
UDP packet database (the “normal,” non-Internet worm packets), and once
with some of the datagrams in the identical observation sequence replaced
randomly (with a probability of 5%) with artificially generated Sapphire
worm UDP datagrams. Only datagrams in the observation sequence ranges
of 2000 to 3000 datagrams, and 4000 to 5000 datagrams were replaced.

The observation sequence values between which Sapphire packets would
randomly replace the original datagrams were selected for two reasons.
Firstly, they gave the HMMs tested time to be trained with the UDP obser-
vations of non-Internet worm traffic before Internet worm packets are seen.
Secondly, they allow the behaviour of the system to be observed before,
during, between and after periods where Internet worm “attacks” occur.

The Sapphire Internet worm datagrams generated had random values for
the UDP/IP datagram fields, except for the UDP destination port (1434),
IP don’t fragment flag, which is one of the three control flags (1) and the
UDP data length field (376). The random UDP source port was limited to
the range 1024 – 65535 (as ports below 1024 are restricted to root processes
when sending packets).

5.2.1 Differentiating Normal and Internet Worm Datagrams
Based on the Average Probability of the Observation
Sequence

In order to determine if a datagram is due to an Internet worm or simply
part of the normal traffic of packets, it was decided to differentiate packets
based on the average predicted probability of all packets in the observation
sequence seen so far. Assuming that the HMM is able to predict the normal
packets, then the predicted probability of these packets in the observation
sequence should be greater than or equal to the average value, while Internet
worm packets should have a predicted probability less than the average.

The initialisation PRNG seed used for the HMMs tested had little effect
on the results obtained, and examples shown in this chapter are typical of
the results obtained using different seeds (results not shown).

Figure 5.1 shows one example UDP datagram observation sequence on
an HMM with ∆ = 5, where no Sapphire packets exist in the observation
sequence. This ∆ value appeared to give the “best” results of the different ∆
values tested (results not shown), based on the criteria described above for
the desired relationship between the predicted probabilities of the normal
packets in the observation sequence and the average observation sequence
probability. However, some of the normal packets do have a predicted prob-
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ability value less than the average, and so would be mis-classified as Internet
worm packets – that is, there are false-positives.

Figure 5.2 shows the same packet sequence as in Figure 5.1, but with
some of the packets having been replaced with Sapphire datagrams (marked
with red circles). As desired, the predicted probabilities of the Sapphire
worm packets in the observation sequence are very low.

5.2.2 Differentiating Normal and Internet Worm Datagrams
Based on the Average Probability of a Limited Time
Period of the Observation Sequence

In order to try to improve on the results of the previous section, and remove
the false-positive packet classifications, the experiments described above
were repeated, except that the average predicted probability of the packets
in the observation sequence was calculated over different (limited) ranges of
previous observations.

Figure 5.3 shows the results of the same experiment shown in Figure 5.1,
with the exception that the average predicated probability value of the ob-
servation sequence is calculated over the previous 20×∆ = 100 observations
only, at each observation. The same model trained with the same observa-
tion sequence, but with some packets replaced with Sapphire datagrams,
can be seen in Figure 5.4.

Similarly, Figure 5.5 and Figure 5.6 show the same experiments, but
with the average calculated over the previous 50 × ∆ = 250 observations,
while Figure 5.7 and Figure 5.8 show the same experiments, but with the
average calculated over the previous 100×∆ = 500 observations.

These results show that, as expected, as the number of observations
over which the average predicted probability of the packets in the obser-
vation sequence is calculated is increased, the effect of peaks and troughs
in the predicted probability of the observation sequence is reduced. Thus,
if such a technique were used to differentiate normal packets from Internet
worm packets, a compromise between the positions shown in Figure 5.2 and
Figure 5.4 must be reached.

To explain the need for this compromise, note that in Figure 5.2, the
average is calculated over the entire observation sequence, which results in
false-positive results (normal packets being classified as Internet worm data-
grams). In Figure 5.4, the average is calculated over only the past 20 ob-
servations, and results in Internet worm packets having an immediate effect
on the average value. This means that high levels of Internet worm packets
in a small period of time could result in the average value dropping to, or
below, the predicted probability of some Internet worm packets, resulting in
these packets being classified as normal traffic. This situation would result
in false-negatives (Internet worm packets being missed).

To demonstrate that this situation could occur, the experiments were
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repeated, except that the probability of a normal datagram being replaced
with a Sapphire Internet worm datagram was increased from 1% to 50%,
and the average predicted probability of the packets in the observation se-
quence was calculated over the previous 10 × ∆ = 50 observations only, at
each observation. The results can be seen in Figure 5.9 and Figure 5.10,
which clearly show the average value dropping to the predicted probability
of Internet worm packets, resulting in false-negatives.

Improved results – obtained by increasing the number of past obser-
vations over which the average predicted probability value is calculated to
50×∆ = 250 observations – can be seen in Figure 5.11 and Figure 5.12. Nev-
ertheless, there are still some false-negatives, and a further increase would
be required for this scenario. This illustrates the compromise that must be
reached between having an average calculated over too small a number of
past observations, which can result in false-negative results, and having the
average calculated over too many, which can result in false-positive results.

5.2.3 Failure to Predict the Observation Sequence

Not all normal packet sequences can be predicted as well as demonstrated in
the above results. For example, Figure 5.13 shows an observation sequence
that results in the predicted probabilities of the packets in the observation
sequence approaching zero as training progresses. Figure 5.14 shows that
replacing some of the packets in the observation sequence with Sapphire
datagrams has little effect on the predicted probabilities at these points.
Figure 5.15 and Figure 5.16 are another, even worse example.

The reason for the behaviour observed in these two examples is that al-
most no observation in the sequence is ever repeated – every single packet
has a different source/destination port pair. These example predicted proba-
bility results are typical of the behaviour observed when packet observations
are not commonly repeated in the observation sequence (results not shown).

It is clear from these results that in order for an anomaly-based network
intrusion detection system based on an HMM to be able to successfully
predict the observation sequence in the first place – let alone predict In-
ternet worm packets within the sequence – then there must be some form
of underlying pattern to the observation sequence. That is, a sequence of
non-repeating packet observations will result in the system being unable to
predict the observation sequence.

5.3 Sapphire Worm Packet Detection Experiments
Without Set “Attack” Periods and Results

In order to determine if the models tested above are able to correctly identify
Internet worm packets without the benefit of being trained with normal
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datagrams before the Internet worm “attacks” commence, the models were
again trained with observation sequences 6000 packets in length. However,
the sequences with some packets replaced with Sapphire worm datagrams
had these packets spread randomly throughout the entire sequence, with a
probability of 1%.

5.3.1 Differentiating Normal and Internet Worm Datagrams
Based on the Average Probability of the Observation
Sequence

Figure 5.17 and Figure 5.18 show the same example HMM, trained with
the same UDP datagram observation sequences as shown in Figure 5.1 and
Figure 5.2. As with the case where there were set Internet worm “attack”
periods, the model with a ∆ value of 5 appeared to give the best results
(results not shown).

As with the case where there were set Internet worm “attack” periods,
the use of the average predicted probability of all the packets in the obser-
vation sequence seen so far to differentiate normal datagrams from Internet
worm packets results in some false-positive classifications.

5.3.2 Differentiating Normal and Internet Worm Datagrams
Based on the Average Probability of a Limited Time
Period of the Observation Sequence

As in the case where there were set Internet worm “attack” periods, an
attempt was made to improve the results of the previous section by using
an average predicted probability of the packets in the observation sequence
calculated over different (limited) ranges of previous observations.

The results of calculating the average predicted probability of the ob-
servation sequence over the last 20 × ∆ = 100 observations can be seen
in Figure 5.19 and Figure 5.20; the results of calculating the average pre-
dicted probability of the observation sequence over the last 50 × ∆ = 250
observations can be seen in Figure 5.21 and Figure 5.22; and the results
of calculating the average predicted probability of the observation sequence
over the last 100 × ∆ = 500 observations can be seen in Figure 5.23 and
Figure 5.24.

All of these results show that, just as in the case where there were set
Internet worm “attack” periods, increasing the number of past observations
over which the average predicted probability of the packets in the observation
sequence is calculated reduces the immediate effect that probability peaks
and troughs can have on the average. Clearly, then, the same compromise
between false-positive results and false-negative results must be made.
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5.3.3 Failure to Predict the Observation Sequence

Of particular interest are the results shown in Figure 5.25 and Figure 5.26.
The HMM and observation sequence is the same as that shown in Figure 5.13
and Figure 5.14, but the Sapphire worm packets in Figure 5.26 have been
placed into the observation sequence as described above in Section 5.3.

These results demonstrate the same inability to predict the observation
sequence as seen before. However, in this example, the inability to predict
the observation sequence combined with Internet worm packets at the start
of the sequence results in the false-negative classification of Internet worm
packets and normal datagrams.

5.4 Summary of the Results

The results described above suggest that an HMM is able to correctly classify
normal and Internet worm traffic without false-negative or false-positive
results, provided that the model is able to predict the normal sequence of
packets, and that an appropriate value to differentiate the two classes of
datagrams can be determined.

However, in the case where the model is not able to predict the normal
sequence of packets, the results will at best have a large number of false-
positive classifications, and at worse have some false-negative classifications.
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Figure 5.1: Example 2 state HMM with ∆ = 5, ρ = 0.99, trained with
UDP datagram source and destination ports. Average sequence probability
in red.
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Figure 5.2: Example 2 state HMM with ∆ = 5, ρ = 0.99, trained with
UDP datagram source and destination ports. Average sequence probability
in red. Packets randomly replaced with generated Sapphire datagrams are
marked with circles.
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Figure 5.3: Example 2 state HMM with ∆ = 5, ρ = 0.99, trained with UDP
datagram source and destination ports. Average sequence probability over
the last 20×∆ observations in red.
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Figure 5.4: Example 2 state HMM with ∆ = 5, ρ = 0.99, trained with
UDP datagram source and destination ports. Average sequence probability
over the last 20 × ∆ observations in red. Packets randomly replaced with
generated Sapphire datagrams are marked with circles.
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Figure 5.5: Example 2 state HMM with ∆ = 5, ρ = 0.99, trained with UDP
datagram source and destination ports. Average sequence probability over
the last 50×∆ observations in red.
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Figure 5.6: Example 2 state HMM with ∆ = 5, ρ = 0.99, trained with
UDP datagram source and destination ports. Average sequence probability
over the last 50 × ∆ observations in red. Packets randomly replaced with
generated Sapphire datagrams are marked with circles.
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Figure 5.7: Example 2 state HMM with ∆ = 5, ρ = 0.99, trained with UDP
datagram source and destination ports. Average sequence probability over
the last 100×∆ observations in red.
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Figure 5.8: Example 2 state HMM with ∆ = 5, ρ = 0.99, trained with
UDP datagram source and destination ports. Average sequence probability
over the last 100 × ∆ observations in red. Packets randomly replaced with
generated Sapphire datagrams are marked with circles.
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Figure 5.9: Example 2 state HMM with ∆ = 5, ρ = 0.99, trained with UDP
datagram source and destination ports. Average sequence probability over
the last 10×∆ observations in red.
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Figure 5.10: Example 2 state HMM with ∆ = 5, ρ = 0.99, trained with
UDP datagram source and destination ports. Average sequence probability
over the last 10 × ∆ observations in red. Packets randomly replaced with
generated Sapphire datagrams (with an increased probability of 50%) are
marked with circles.
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Figure 5.11: Example 2 state HMM with ∆ = 5, ρ = 0.99, trained with
UDP datagram source and destination ports. Average sequence probability
over the last 50×∆ observations in red.
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Figure 5.12: Example 2 state HMM with ∆ = 5, ρ = 0.99, trained with
UDP datagram source and destination ports. Average sequence probability
over the last 50 × ∆ observations in red. Packets randomly replaced with
generated Sapphire datagrams (with an increased probability of 50%) are
marked with circles.
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Figure 5.13: Example 2 state HMM with ∆ = 5, ρ = 0.99, trained with
UDP datagram source and destination ports. Average sequence probability
in red.
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Figure 5.14: Example 2 state HMM with ∆ = 5, ρ = 0.99, trained with
UDP datagram source and destination ports. Average sequence probability
in red. Packets randomly replaced with generated Sapphire datagrams are
marked with circles.
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Figure 5.15: Example 2 state HMM with ∆ = 5, ρ = 0.99, trained with
UDP datagram source and destination ports. Average sequence probability
in red.
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Figure 5.16: Example 2 state HMM with ∆ = 5, ρ = 0.99, trained with
UDP datagram source and destination ports. Average sequence probability
in red. Packets randomly replaced with generated Sapphire datagrams are
marked with circles.
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Figure 5.17: Example 2 state HMM with ∆ = 5, ρ = 0.99, trained with
UDP datagram source and destination ports. Average sequence probability
in red.
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Figure 5.18: Example 2 state HMM with ∆ = 5, ρ = 0.99, trained with
UDP datagram source and destination ports. Average sequence probability
in red. Packets randomly replaced with generated Sapphire datagrams are
marked with circles.
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Figure 5.19: Example 2 state HMM with ∆ = 5, ρ = 0.99, trained with
UDP datagram source and destination ports. Average sequence probability
over the last 20×∆ observations in red.
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Figure 5.20: Example 2 state HMM with ∆ = 5, ρ = 0.99, trained with
UDP datagram source and destination ports. Average sequence probability
over the last 20 × ∆ observations in red. Packets randomly replaced with
generated Sapphire datagrams are marked with circles.
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Figure 5.21: Example 2 state HMM with ∆ = 5, ρ = 0.99, trained with
UDP datagram source and destination ports. Average sequence probability
over the last 50×∆ observations in red.
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Figure 5.22: Example 2 state HMM with ∆ = 5, ρ = 0.99, trained with
UDP datagram source and destination ports. Average sequence probability
over the last 50 × ∆ observations in red. Packets randomly replaced with
generated Sapphire datagrams are marked with circles.
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Figure 5.23: Example 2 state HMM with ∆ = 5, ρ = 0.99, trained with
UDP datagram source and destination ports. Average sequence probability
over the last 100×∆ observations in red.
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Figure 5.24: Example 2 state HMM with ∆ = 5, ρ = 0.99, trained with
UDP datagram source and destination ports. Average sequence probability
over the last 100 × ∆ observations in red. Packets randomly replaced with
generated Sapphire datagrams are marked with circles.
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Figure 5.25: Example 2 state HMM with ∆ = 5, ρ = 0.99, trained with
UDP datagram source and destination ports. Average sequence probability
in red.
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Figure 5.26: Example 2 state HMM with ∆ = 5, ρ = 0.99, trained with
UDP datagram source and destination ports. Average sequence probability
in red. Packets randomly replaced with generated Sapphire datagrams are
marked with circles.
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Chapter 6

Conclusions and Suggestions
for Future Work

6.1 Conclusions

This thesis demonstrates that Hidden Markov Models (HMMs) – specifically,
on-line HMMs – are able to be successfully used as the basis of an anomaly-
based network intrusion detection system for Internet worms.

Such a system is on-line, recognises the fact that network packets are
interrelated, requires no initial training, and is able to protect an individual
machine – and thus, could be used to protect an entire network of machines
by having the system run once for each internal machine on a corporate
firewall. This means that such a system meets four of the six requirements
outlined in Section 1.3.

The system also meets a fifth requirement, that the system can “ac-
curately and consistently detect anomalous packet traffic associated with
Internet worms,” but only under two caveats. Firstly, the sequence of nor-
mal Internet packets (in which the Internet worm datagrams exist) must
have an underlying pattern that an HMM can predict – that is, the obser-
vation sequence can not consist of observations that do not repeat. (There
is some evidence that non-repetitive packet sequences are common – see the
next section for more details.) Secondly, an appropriate probability value
must be selected to differentiate normal Internet datagrams from Internet
worm packets.

6.2 Suggestions for Future Work

6.2.1 Improving the Internet Worm Detection Capabilities

Obviously, the two caveats described above seriously limit the potential use
of an anomaly-based network intrusion detection system for Internet worms
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based on an on-line HMM.
As some real-life packet sequences can not be predicted by the HMMs

used in Chapter 5, some advantage may be obtained by modifying the system
to eliminate the first caveat. The experiments performed in this thesis found
that only two of ten different observation sequences tested were able to be
predicted by the HMMs used – however, a detailed analysis of the nature of
packet sequences should be carried out to determine if non-repetitive packet
sequences are sufficiently common in real life that the inability of an HMM
to predict these sequences will be a problem.

One possible way to eliminate the first caveat would be to look at how
well an HMM is able to predict a sequence of normal packets sent and
received from a single UDP port. Obviously, the datagram fields used as
packet observations would need to be something other than the port number
being monitored by the model.

Some form of training of the model before it is used may also prove to
be beneficial in cases where the system is less able to predict the sequence
of normal packets, as this may help to eliminate the false-negative results
seen in Figure 5.26.

There would also clearly be an advantage in eliminating the second
caveat, by improving the way the packet differentiation value is selected.
One suggestion would be to modify the number of observations over which
the average predicted probability of the observation sequence is calculated
based on the rate of change of the average – increasing the number of ob-
servations to slow rapid change, and decreasing the number of observations
when little change is occurring.

Finally, the second caveat could possibly be ignored if the system was to
be used as a first line of defense only. If the number of false-positives can
be kept relatively small, and there are no false-negatives, then the system
may well be useful as a filter for reducing the number of packets that a more
effective (and presumably more computationally expensive) Internet worm
detection system has to deal with.

6.2.2 Testing with Other Internet Worms

This thesis has only looked at one Internet worm out of hundreds. A great
deal of testing with different worm types, using both TCP/IP as well as
UDP/IP, needs to be performed in order to determine how effective an
anomaly-based network intrusion detection system for Internet worms based
on HMMs would actually be.

6.2.3 Implementation Speed

Of the requirements for an anomaly-based network intrusion detection sys-
tem for Internet worms set out in Section 1.3, only the ability of the system
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“to process information quickly, so that the speed at which packets are de-
livered is not adversely affected” has not been explicitly investigated in this
thesis.

However, it has been shown that as the number of observations seen
by an on-line HMM grows, there is a polynomial increase in the training
time required (see Section 4.4 and Appendix A). Thus, it would appear
that further work will be required to improve the implementation speed
before the system described meets all of the requirements outlined. There
are several possible approaches that could be considered.

Firstly, it should be possible to alter the implementation described above
so that each observation is tagged with the most recent observation time.
Once the number of observations seen by the model reaches a point where
the training speed is too slow to ensure that packet delivery is not adversely
affected, the least recently seen observation could be dropped from the B
matrix. Of course, the effect of such a scheme on the ability of the system
to successfully identify Internet worm packets would need to be carefully
evaluated.

Secondly, a sawtooth lag on-line HMM exists which is computationally
better than the fixed lag model [14], and may prove to be useful in improv-
ing the speed of the system. (Note, however, that the literature does not
currently have a complete discrete state version of the update algorithms
for sawtooth lag models.)

Finally, there may be some advantage in extending the theory of HMMs
to create a factorial, on-line HMM. The motivation behind factorial HMMs
is to reduce the state space required [12]. However, the exact training al-
gorithm for factorial HMMs is intractable [12], so at least three different
training algorithm approximations have been developed [12]. Some of these
approximate training algorithms may have speed advantages over the im-
plementation described in this thesis.
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Appendix A

Informal Order Analysis of
the On-line Hidden Markov
Model Algorithms

On-line Forward-Backward Algorithm

It is clear from a comparison of the forward pass of the regular Hidden
Markov Model (HMM) Forward-Backward algorithm (Section 2.2.1) and
the on-line version of the same (Section 2.4.1) that, knowing the forward
pass of the regular Forward-Backward algorithm is of order N2T (where N
is the number of states and T is the observation sequence length), the on-line
Forward-Backward algorithm’s forward pass will be of order N2, as the α
values are stored as “running” values in the series of models, and only need
to be updated for a single observation (i.e. T = 1).

It is also clear from a comparison of the two different forms of backward
pass that, knowing the backward pass of the regular Forward-Backward algo-
rithm is of order N2T , the on-line Forward-Backward algorithm’s backward
pass will be of order N2∆, as at time t = k, the observation sequence used
in the backward pass will be Ok:k+∆, which has length ∆.

On-line Training Algorithms

While the analysis of the training algorithms is generally ignored in the
literature due to the fact that most HMMs are trained off-line – and thus
the speed of the algorithms is not particularly important – in the case of an
on-line HMM, speed of training is an issue due to the fact that the model
is trained at the same time it is used. Thus, the on-line training algorithms
are considered here.

Firstly, note that the calculation of γt|Λt−1
(i) for each model will obvi-

ously be of order N , while the calculation of ξt|Λt−1
(i, j) will be of order N2

(from their definitions, see Section 2.4.2).
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Similarly, the calculation of µt(i, j) will be of order N2 (as “running”
values can be used to store past µ values, just as can be done for the α
values), and the calculation of gt(i, j) will be of order N2.

This means that the update algorithm for the A matrix values:

āij(t + 1) = āij(t) +
1

µt(i, j)
×

gt(i, j)−

∑N
j′=1

gt(i, j′)
µt(i, j′)∑N

j′=1

1
µt(i, j′)


will also be of order N2, provided the summation of the µt(i, j) and gt(i, j)
values are calculated during the process of calculating the individual µ and
g values.

Similarly, the update algorithm for the B matrix values for observations
n ∀ n 6= Ot:

b̄i(t, n) = b̄i(t− 1, n)− bi(t− 1, Ot)×

(
γt|Λt−1

(i)∑t
k=1 γk|Λk−1

(i)

)

×


bi(t, n)2∑t

k=1 γk|Λk−1
(i)∑M

p=1

(
bi(t, p)2∑t

k=1 γk|Λk−1
(i)

)


will be of order M2N (where M is the number of observations seen by the
model), while the update algorithm for the B matrix for the observation
n = Ot:

b̄i(t, n) = 1−
M∑

p6=n

b̄i(t, p)

will be of order NM .
This informal order analysis supports the results of Section 4.4, as it

shows a polynomial increase in training time as the number of states is
increased, as well as showing a polynomial increase in training time as the
number of observations is increased.
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