Exploiting Underlying Structure for Detailed
Reconstruction of an Internet-scale Event

Abhishek Kumar
Georgia Institute of Technology
akumar@cc.gatech.edu

Abstract— Network “telescopes” that record packets sent to
unused blocks of Internet address space have emerged as an
important tool for observing Internet-scale events such as the
spread of worms and the backscatter from flooding attacks
that use spoofed source addresses. Current telescope analyses
produce detailed tabulations of packet rates, victim population,
and evolution over time. While such cataloging is a crucial
first step in studying the telescope observations, incorporating
an understanding of the underlying processes generating the
observations allows us to construct detailed inferences about the
broader “universe” in which the Internet-scale activity occurs,
greatly enriching and deepening the analysis in the process.

In this work we apply such an analysis to the propagation
of the Witty worm, a malicious and well-engineered worm that
when released in March 2004 infected more than 12,000 hosts
worldwide in 75 minutes. We show that by carefully exploiting
the structure of the worm, especially its pseudo-random number
generation, from limited and imperfect telescope data we can with
high fidelity: extract the individual rate at which each infectee
injected packets into the network prior to loss; correct distortions
in the telescope data due to the worm’s volume overwhelming
the monitor; reveal the worm’s inability to fully reach all of
its potential victims; determine the number of disks attached
to each infected machine; compute when each infectee was last
booted, to sub-second accuracy; explore the ‘“who infected whom”
infection tree; uncover that the worm specifically targeted hosts
at a US military base; and pinpoint Patient Zero, the initial point
of infection, i.e., the IP address of the system the attacker used
to unleash Witty.

I. INTRODUCTION

Network “telescopes” have recently emerged as important
tools for observing Internet-scale events such as the spread of
worms, the “backscatter” of responses from victims attacked
by a flood of requests with spoofed source addresses, and
incessant “background radiation” consisting of other anoma-
lous traffic [11], [15], [16]. Telescopes record packets sent
to unused blocks of Internet address space, with large ones
using /8 blocks covering as much as 1/256 of the total address
space. During network-wide anomalous events, such as the
propagation of a worm, telescopes can collect a small yet
significant slice of the worm’s entire traffic. Previously, such
logs of worm activity have been used to infer aggregate
properties, such as the worm’s infection rate (number of
infected systems), the total scanning rate (number of worm
copies sent per second), and the evolution of these quantities
over time.

The fundamental premise of our work is that by carefully
considering the underlying structure of the sources sending

Vern Paxson
International Computer Science Institute
vern@icir.org

Nicholas Weaver
International Computer Science Institute
nweaver @icsi.berkeley.edu

traffic to a telescope, we can extract a much more detailed
reconstruction of such events. To this end, we analyze tele-
scope observations of the Witty worm, a malicious and well-
engineered' worm that spread worldwide in March 2004 in
75 minutes. We show that it is possible to reverse-engineer
the state of each worm infectee’s Pseudo-Random Number
Generator (PRNG), which then allows us to recover the full
set of actions undertaken by the worm. This process is greatly
complicated by the worm’s use of periodic reseeding of its
PRNG, but we show it is possible to determine the new seeds,
and in the process uncover detailed information about the
individual hosts, including access bandwidth, up-time, and the
number of physical drives attached. Our analysis also enables
inferences about the network, such as shared bottlenecks and
the presence or absence of losses on the path from infectees
to the telescope. In addition, we uncover details unique to the
propagation of the Witty worm: its failure to scan about 10%
of the IP address space, the fact that it initially targeted a
US military base, and the identity of Patient Zero — the host
the worm’s author used to release the worm.

Our analysis reveals systematic distortions in the data
collected at telescopes and provides a means to correct this
distortion, leading to more accurate estimates of quantities
such as the worm’s aggregate scan rate during its spread. It
also identifies consequences of the specific topological place-
ment of telescopes. In addition, detailed data about hitherto
unmeasured quantities that emerges from our analysis holds
promise to aid future worm simulations achieve a degree of
realism well beyond today’s abstract models. The techniques
developed in our study, while specific to the Witty worm,
highlight the power of such analysis, and provide a template
for future analysis of similar events.

We organize the paper as follows. Section II presents
background material: the operation of network telescopes and
related work, the functionality of Witty, and the structure
of linear-congruential PRNGs. In Section III we provide
a roadmap to the subsequent analysis. We discuss how to
reverse-engineer Witty’s PRNG in Section IV, and then use
this to estimate access bandwidth and telescope measurement
distortions in Section V. Section VI presents a technique for
extracting the seeds used by individual infectees upon reseed-
ing their PRNGs, enabling measurements of each infectee’s

I'See [22] for an analysis of what Witty’s design implies about its author.

system time and number of attached disks. This section also
discusses our exploration of the possible infector-infectee
relationships, and the interaction of client-side topology with
sending rates. We discuss broader consequences of our study
in Section VII and conclude in Section VIII.

II. BACKGROUND
A. Network Telescopes and Related Work

Network telescopes operate by monitoring unused or
mostly-unused portions of the routed Internet address space,
with the largest able to record traffic sent to /8 address
blocks (16.7M addresses) [11], [23]. In its simplest form,
the telescope consists of a monitoring machine that passively
records all packets headed to any of the addresses in the block.
Since there are few or no actual machines using these ad-
dresses, traffic headed there is generally anomalous, and often
malicious, in nature. Examples of traffic observed at network
telescopes include port and address scans, “backscatter” from
flooding attacks, misconfigurations, and the worm packets that
are of immediate interest to this work.

The first major study performed using a network telescope
was the analysis of backscatter by Moore et al. [15]. This study
assessed the prevalence and characteristics of spoofed-source
denial-of-service (DoS) attacks and the characteristics of the
victim machines. The work built on the observation that most
DoS tools that spoof source addresses pick addresses without
a bias towards or against the telescope’s observational range.
The study also inferred victim behavior by noting that the
response to spoofed packets will depend on the state of the
victim, particularly whether there are services running on the
targeted ports.

Telescopes have been the primary tool for understanding
the Internet-wide spread of previous worms, beginning with
Code Red [2], [21]. Since, for a random-scanning worm, the
worm is as likely to contact a telescope address as a normal
address, we can extrapolate from the telescope data to compute
the worm’s aggregate scanning rate as it spreads. In addition,
from telescope data we can see which systems were infected,
thus estimate the average scanning rate per worm. For high-
volume sources, we can also estimate the effective bandwidth
of the source based on the rate at which its packets arrive
at the telescope and adjusting for the telescope’s “gathering
power” (portion of entire space monitored).

A variation is the distributed telescope, which monitors
a collection of disparate address ranges to create an overall
picture [1], [S]. Although some phenomena (like Code Red [7],
[2]) scan uniformly, others either have biases in their address
selection (such as Slammer [12], [13]) or simply exclude some
address ranges entirely (such as Scalper [6] and Slapper [17]).
Using a distributed telescope allows more opportunity to
observe nonuniform phenomenon, and also gives an oppor-
tunity to observe that, even correcting for “local preference”
biases present in some forms of randomized scanning, different
telescopes observe quantitatively different phenomena [5].

The biggest limitation of telescopes is their passive nature,
which often limits the amount of information which can be

gathered. One solution useful for some studies has been active
telescopes: changing the telescope logic to either reply with
SYN-ACKs to TCP SYNs in order to capture the resulting
traffic [5], or implementing a more complex state machine
[16] that emulates part of the protocol. These telescopes can
disambiguate scans from different worms that target the same
ports by observing subsequent transactions.

In this work we take a different approach for enhancing
the results of telescope measurements: augmenting traces from
a telescope with a detailed analysis of the structure of the
sources sending the packets. One key insight is that the PRNG
used to construct “random” addresses for a worm can leak the
internal state of the PRNG. By combining the telescope data
with our knowledge of the PRNG, we can then determine the
internal state for each copy of the worm and see how this state
evolves over time.

While there have been numerous studies of Internet worms,
these have either focused on detailed analysis of the worm’s
exact workings, beginning with analysis of the 1988 Morris
Worm [8], [20], or with aggregate propagation dynamics [24],
[12], [19], [21], [14]. In contrast, our analysis aims to develop
a detailed understanding of the individual infected hosts and
how they interacted with the network.

B. Datasets

We used traces from two telescopes, operated independently
by CAIDA [11] and the University of Wisconsin [23]. Both
telescopes monitor /8 blocks of IP addresses. Since each /8
address block contains 1/256 of all valid IPv4 addresses, these
telescopes see an equivalent fraction of scan traffic addressed
to random destinations picked uniformly from the 32-bit IP
address space. The CAIDA telescope logs every packet it
receives, while the Wisconsin telescope samples the received
packets at the rate of 1/10. The CAIDA trace [18] begins at
04:45:36 AM UTC and runs for 75 minutes, 4 seconds, totaling
45,493,805 packets. The Wisconsin trace runs from 05:01:01
AM UTC for 60 minutes and totals 3,627,596 packets.

C. Functionality of the Witty worm

As chronicled by Shannon and Moore [19], an In-
ternet worm was released on Friday March 19, 2004
at approximately 8:45 PM PST (4:45 AM UTC, March
20). Its payload contained the phrase “(°.") insert
witty message here (7.7)” so it came to be known
as the Witty worm. The worm targeted a buffer overflow vul-
nerability in several Internet Security Systems (ISS) products,
including ISS RealSecure Network, RealSecure Server Sensor,
RealSecure Desktop, and BlackICE.

The vulnerability exploited was a stack-based overflow
in the ICQ analyzer of these security products. When they
received an ICQ packet, defined as any UDP packet with
source port 4000 and the appropriate ICQ headers, they copied
the packet into a fixed-sized buffer on the stack in preparation
for further analysis. The products executed this code path
regardless of whether a server was listening for packets on
the particular UDP destination port. In addition, some products

Seed the PRNG using system time.
Send 20,000 copies of self to random destinations.
Open a physical disk chosen randomly between 0 & 7.
If success:

Overwrite a randomly chosen block.

Goto line 1.
Else:

Goto line 2.

PN R LN

Fig. 1. Functionality of the Witty worm

could become infected while they passively monitored network
links promiscuously, because they would attempt to analyze
ICQ packets seen on the link even though they were not
addressed to the local host.

Figure 1 shows a high-level description of the functionality
of the Witty worm, as revealed by a disassembly of the
worm [10]. The worm is quite compact, fitting in the first
675 bytes of a single UDP packet. Upon infecting a host,
the worm first seeds its random number generator with the
system time on the infected machine and then sends 20,000
copies of itself to random destinations. (These packets have a
randomly selected destination port and a randomized amount
of additional padding, but keep the source port fixed.) After
sending the 20,000 packets, the worm uses a three-bit random
number to pick a disk via the open system call. If the call
returns successfully, the worm overwrites a random block on
the chosen disk, reseeds its PRNG, and goes back to sending
20,000 copies of itself. Otherwise, the worm jumps directly to
the send loop, continuing for another 20,000 copies, without
reseeding its PRNG.

D. The LC PRNG

Anyone who considers arithmetical methods of producing
random digits is, of course, in a state of sin.

— John Von Neumann (1951) [9]

The Witty worm used a simple feedback-based pseudo-
random number generator (PRNG) of the form known as linear
congruential (LC):

Xit1 =X;%a+b modm)

For a given m, picking effective values of a and b requires
care lest the resulting sequences lack basic properties such as
uniformity. One common parameterization is:

m = 2%

a=214,013, b=2,531,011,

With the above values of a, b, m, the LC PRNG generates a
permutation of all the integers in [0, m — 1]. A key point then
is that with the knowledge of any X, all subsequent pseudo-
random numbers in the sequence can be generated by simply
repeatedly applying Eqn 1. It is also possible to invert Eqn 1
to compute X; if the value of X;; is known. In particular, it
can be shown that the following inverts Eqn 1:

X; = (X1 —b)xa™t modm 2)

where, for ¢ = 214,013, a~! = 3,115, 528, 533.

Eqns 1 and 2 provide us with the machinery to generate
the entire sequence of random numbers as generated by an
LC PRNG, either forwards or backwards, from any arbitrary
starting point on the sequence. Thus, if we can extract any
X;, we can compute any other X;,,, given n. However,
it is important to note that most uses of pseudo-random
numbers, including Witty’s, do not directly expose any X,
but rather extract a subset of X;’s bits and intermingle them
with bits from additionally generated pseudo-random numbers,
as detailed below.

ITII. OVERVIEW OF OUR ANALYSIS

The first step in our analysis, covered in Section IV, is to
develop a way to uncover the state of an infectee’s PRNG.
It turns out that we can do so from the observation of just a
single packet sent by the infectee and seen at the telescope.
(Note, however, that if recovering the state required observing
consecutive packets, we would likely often still be able to
do so: while the telescopes record on average only one in
256 packets transmitted by an infectee, occasionally — i.e.,
roughly one time out of 256 — they will happen to record
consecutive packets.)

An interesting fact revealed by careful inspection of the
use of pseudo-random numbers by the Witty worm is that the
worm does not manage to scan the entire 32-bit address space
of the Internet, in spite of using a correct implementation of
the PRNG. This analysis also reveals the identity of a special
host that very likely was used to start the worm.

Once we have the crucial ability to determine the state
of an infectee’s PRNG, we can use this state to reproduce
the worm’s exact actions, which then allows us to com-
pare the resulting generated packets with the actual packets
seen at the telescope. This comparison yields a wealth of
information about the host generating the packets and the
network the packets traversed. First, we can determine the
access bandwidth of the infectee, i.e., the capacity of the
link to which its network interface connects. In addition,
given this estimate we can explore significant flaws in the
telescope observations, namely packet losses due to the finite
bandwidth of the telescope’s inbound link. These losses cause
a systematic underestimation of infectee scan rates, but we
design a mechanism to correct for this bias by calibrating
against our measurements of the access bandwidth. We also
highlight the impact of network location of telescopes on the
observations they collect. Section V covers this issue in detail.

We next observe that choosing a random disk, in line 3
of Figure 1, consumes an additional pseudo-random number
in addition to those consumed by each transmitted packet.
Observing such a discontinuity in the sequence of random
numbers in packets from an individual infectee flags an
attempted disk write and a potential reseeding of the infectee’s
PRNG. In Section VI we further develop a detailed mechanism
to detect the value of the seed at each such reseeding. As the
seed at line 1 of Fig. 1 is set to the system time in milliseconds
since boot up, this mechanism allows us to estimate the boot

rand(){
Note that 32-bit integers obviate the need for
a modulus operation here.
X = X % 214013 + 2531011;
return X; }
srand(seed){ X = seed; }
main(){
srand(get_tick_count());
for (i=0; i < 20,000; ++i)
dest_ip < rand()jo...151|[rand(o...15]:
dest_port <— rand()[o...15];
packetsize < 768+rand()jo...s];
packetcontents <— top of stack;
sendto();
if(open(physicaldisk, rand()[13...15]))
overwrite_block(rand()o...147||0x4€20);
goto 1;
else goto 2; }

e R I

Fig. 2. Pseudocode of the Witty worm

time of individual infectees just by looking at the sequence of
occasional packets received at the telescope. Once we know
the PRNG’s seed, we can precisely determine the random
numbers it generates to synthesize the next 20,000 packets,
and also the three-bit random number it uses next time to
pick a physical disk to open. We can additionally deduce the
success or failure of this open system call by whether the
PRNG state for subsequent packets from the same infectee
follow in the same series or not. Thus, this analysis reveals
the number of physical disks on the infectee.

Knowledge of the seeds also provides access to the complete
list of packets sent by the infectee. This allows us to infer
the possible infector-infectee relationships during the actual
propagation of the worm. Lastly, in Section VI-D, we use
our ability to precisely determine the access bandwidth of
infectees to discover interesting effects caused by Ethernet
switches, allowing inferences about the LAN configuration at
the infectee.

IV. ANALYSIS OF WITTY’S PRNG

The first step in our analysis is to examine a disassembly of
the binary code of the Witty worm [10]. Security researchers
typically publish such disassemblies immediately after the
release of a worm in an attempt to understand the worm’s
behavior and devise suitable countermeasures. Figure 2 shows
the detailed pseudocode of the Witty worm as derived from
one such disassembly [10]. The rand() function implements the
Linear Congruential PRNG as discussed in Section II-D. In the
rest of this section, we use the knowledge of the pseudocode
to develop a technique for deducing the state of the PRNG at
an infectee from any single packet sent by it. We also describe
how as a consequence of the specific manner in which Witty
uses the pseudo-random numbers, the worm fails to scan the
entire IP address space, and also reveals the identity of Patient
Zero.

A. Breaking the state of the PRNG at the infectee

The Witty worm constructs “random” destination IP ad-
dresses by concatenating the top 16 bits of two consecutive

pseudo random numbers generated by its PRNG. In our nota-
tion, X[o...15) represents the top 16 bits of the 32 bit number
X, with bit 0 being the most significant. The destination port
number is constructed by taking the top 16 bits of the next
(third) random number. The packet size” itself is chosen by
adding the top 9 bits of a fourth random number to 768. Thus,
each packet sent by the Witty worm contains bits from four
consecutive random numbers, corresponding to lines 3,4 and
5 in Fig. 2. If all 32 bits of any of these numbers were known,
it would completely specify the state of the PRNG. But since
only some of the bits from each of these numbers is known,
we need to design a mechanism to retrieve all 32 bits of one of
these numbers from the partial information contained in each
packet.

We do so as follows. If the first call to rand() returns X;,
then:

dest_ip = X,’7[0...15] ‘ |Xi+17[0...15]

dest_ port = X s0...15]

where || is the concatenation operation. Now, we know that
X; and X;;q are related by Eqn 1, and so are X;;; and
Xito. Furthermore, there are only 65,536 (2'9) possibilities
for the lower 16 bits of X;, and only one of them is such
that when used with Xj [o...15) (available from the packet)
the next two numbers generated by Eqn 1 have the same
top 16 bits as X1 j0...15) and X4 [o...15, Which are also
observed in the received packet. In other words, there is only
one 16-bit number Y that satisfies the following two equations
simultaneously:

Xz'+1,[0---15] = (Xi,[0~~~15]||Y *xa mod m)[0~~~15]
Xi+2,[0~~~15] = ((Xi,[o...15]||Y*a mod m)*a mod m)[g...15]

For each of the 2!6 possible values of Y, verifying the
first equality takes one addition and one multiplication.® Thus
trying all 2'6 possibilities is fairly inexpensive. For the small
number of possible values of Y that satisfy the first equation,
we try the second equation, and the value Y* that satisfies
both the equations gives us the lower sixteen bits of X; (i.e.,
Xin6..-31] = Y*). In our experiments, we found that on the
average about two of the 216 possible values satisfy the first
equation, but there was always a unique value of Y™ that
satisfied both the equations.

B. Why Witty fails to scan the entire address space

The first and somewhat surprising outcome from investigat-
ing how Witty constructs random destination addresses is the
observation that Witty fails to scan the entire IP address space.
This means that, while Witty spread at a very high speed,
infecting over 12,000 hosts within 75 minutes of its release,

2The main body of the Witty worm, including the initial pad required to
cause the buffer overflow, fits in 675 bytes. However, the worm picks a larger
packet-size, as shown in line 5 of Fig. 2, and pads the tail of the packet with
whatever is on the stack, presumably to complicate the use of static filtering
to block the contagion.

3Since m = 232, the modulo operation is implemented implicitly by the use
of 32 bit registers and disregarding their overflow during arithmetic operations.

due to a subtle error in its use of pseudo-random numbers
about 10% of vulnerable hosts were never infected with the
worm.

To understand this flaw in full detail, we first visit the
motivation for the use of only the top 16 bits of the 32 bit
results returned by Witty’s LC PRNG. This was recommended
by Knuth [9], who showed that the high order bits are
“more random” than the lower order bits returned by the LC
PRNG. Indeed, for this very reason, several implementations
of the rand() function, including the default C library of
Windows and SunOS, return a 15 bit number, even though
their underlying LC PRNG uses the same parameters as the
Witty worm and produces 32 bit numbers.

However, this advice was taken out of context by the author
of the Witty worm. Knuth’s advice applies when uniform
randomness is the desired property, and is valid only when
a small number of random bits are needed. For a worm trying
to maximize the number of infected hosts, one reason for
using random numbers while selecting destinations is to avoid
detection by intrusion detection systems that readily detect
sequential scans. A second reason is to maintain independence
between the portions of the address-space scanned by individ-
ual infectees. Neither of these reasons actually requires the
kind of “good randomness” provided by following Knuth’s
advice of picking only the higher order bits.

As discussed in Section II-D, for specific values of the
parameters a,b and m, the LC PRNG is a permutation
PRNG that generates a permutation of all integers in the
range 0 to m — 1. By the above definition, if the Witty worm
were to use the entire 32 bits of a single output of its LC
PRNG as a destination address, it would eventually generate
each possible 32-bit number, hence successfully scanning the
entire [P address space. (This would also of course make
it trivial to recover the PRNG state.) However, the worm’s
author chose to use the concatenation of the top 16 bits of
two consecutive random numbers from its PRNG. With this
action, the guarantee that each possible 32-bit number will be
generated is lost. In other words, there is no certainty that the
set of 32-bit numbers generated in this manner will include
all integers in the set [0,23? — 1].

We enumerated Witty’s entire “orbit” and found that there
are 431,554,560 32-bit numbers that can never be generated.
This corresponds to 10.05% of the IP address space that was
never scanned by Witty. On further investigation, we found
these unscanned addresses to be fairly uniformly distributed
over the 32-bit address space of IPv4. Hence, it is reasonable to
assume that approximately the same fraction of the populated
IP address space was missed by Witty. In other words, even
though the portions of IP address space that are actually used
(populated) are highly clustered, because the addresses that
Witty misses are uniformly distributed over the space of 32-
bit integers, it missed roughly the same fraction of address
among the set of IP addresses in actual use.

Observing that Witty does not visit some addresses at all,
one might ask whether it visits some addresses more frequently
than others. Stated more formally, given that the period of

100

80 -]
70 1
60 - :

50 F normal victims —— 1

doubly scanned victims -—----
unscanned victims 1

% infected

40 |
30 1
20F / 1

O L L L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time (sec.)

Fig. 3. Growth curves for victims whose addresses were scanned once per
orbit, twice per orbit, or not at all.

Witty’s PRNG is 232, it must generate 232 unique (X;, X;41)
pairs, from which it constructs 232 32-bit destination IP
addresses. Since this set of 232 addresses does not contain the
431,554,560 addresses missed by Witty, it must contain some
repetitions. What is the nature of these repetitions? Interest-
ingly, there are exactly 431,554,560 other 32-bit numbers that
occur twice in this set, and no 32-bit numbers that occur three
or more times. This is surprising because, in general, in lieu
of the 431,554,560 missed numbers, one would expect some
number to be visited twice, others to be visited thrice and so
on. However, the peculiar structure of the sequence generated
by the LC PRNG with specific parameter values created the
situation that exactly the same number of other addresses were
visited twice and none were visited more frequently.

During the first 75 minutes of the release of the Witty
worm, the CAIDA telescope saw 12,451 unique IP addresses
as infected. Following the above discussion, we classified these
addresses into three classes. There were 10,638 (85.4%) ad-
dresses that were scanned just once in an orbit, i.e., addresses
that experienced a normal scan rate. Another 1,409 addresses
(11.3%) were scanned twice in an orbit, hence experiencing
twice the normal growth rate. A third class of 404 (3.2%)
addresses belonged to the set of addresses never scanned by
the worm. At first blush one might wonder how these latter
could possibly appear, but we can explain their presence as
reflecting inclusion in an initial “hit list” (see below), operating
in promiscuous mode, or aliasing due to multi-homing, NAT
or DHCP.

Figure 3 compares the growth curves for the three classes
of addresses. Notice how the worm spreads faster among the
population of machines that experience double the normal
scan rate. At the end of 1,000 seconds from its release,
Witty had infected half of the doubly-scanned addresses that
it would infect in the first 75 minutes. On the other hand,
in the normally-scanned population, it had only managed to
infect about a third of the total victims that it would infect
in 75 minutes. Later in the hour, the curve for the doubly-

scanned addresses is flatter than that for the normally-scanned
ones, indicating that most of the victims in the doubly-scanned
population were already infected at that point.

The curve for infectees whose source address was never
scanned by Witty is particularly interesting. Twelve of the
never-scanned systems appear in the first 10 seconds of the
worm’s propagation, very strongly suggesting that they are
part of an initial hit-list. This explains the early jump in the
plot: it’s not that such machines are overrepresented in the
hit-list, rather they are underrepresented in the total infected
population, making the hit-list propagation more significant
for this population.

Another class of never-scanned infectees are those pas-
sively monitoring a network link. Because these operate in
promiscuous mode, their “cross section” for becoming infected
is magnified by the address range routed over the link. On
average, these then will become infected much more rapidly
than normal over even doubly-scanned hosts. We speculate that
these infectees constitute the remainder of the early rise in the
appearance of never-scanned systems. Later, the growth rate
of the never-scanned systems substantially slows, lagging even
the single-scanned addresses. Likely these remaining systems
reflect infrequent aliasing due to multihoming, NAT, or DHCP.

C. Identifying Patient Zero

Along with “Can all addresses be reached by scans?”,
another natural question to ask is “Do all sources indeed
travel on the PRNG orbit?” Surprisingly, the answer to this
is No. There is a single Witty source that consistently fails to
follow the orbit. Further inspection reveals that the source (i)
always generates addresses of the form A.B.A.B rather than
A.B.C.D, (ii) does not randomize the packet size, and (iii)
is present near the very beginning of the trace, but not before
the worm itself begins propagating. That the source fails to
follow the orbit clearly indicates that it is running different
code than do all the others; that it does not appear prior to
the worm’s onset indicates that it is not a background scanner
from earlier testing or probing (indeed, it sends valid Witty
packets which could trigger an infection); and that it sends to
sources of a limited form suggests a bug in its structure that
went unnoticed due to a lack of testing of this particular Witty
variant.

We argue that these peculiarities add up to a strong like-
lihood that this unique host reflects Patient Zero, the system
used by the attacker to seed the worm initially. Patient Zero
was not running the complete Witty worm but rather a (not
fully tested) tool used to launch the worm. To our knowledge,
this represents the first time that Patient Zero has been identi-
fied for a major worm outbreak.* We have conveyed the host’s
IP address (which corresponds to a European retail ISP) to law
enforcement.

If all Patient Zero did was to send out packets of the form
A.B.A.B as we observed, then the worm would have never

4The only related case of which we are aware was the Melissa email virus
[3], where the author posted the virus to USENET as a means of initially
spreading his malcode, and was traced via USENET headers.

spread, as we detected no infected hosts with such addresses.
However, as developed both above in discussing Figure 3 and
later in Section VI-A.2, the evidence is compelling that Patient
Zero first worked through a “hit list” of known-vulnerable
hosts before settling into its ineffective scanning pattern.

V. BANDWIDTH MEASUREMENTS

An important use of network telescopes lies in inferring the
scanning rate of a worm by extrapolating from the observed
packets rates from individual sources. In this section, we
develop a technique based on our analysis of Witty’s PRNG to
estimate the access bandwidth of individual infectees. We then
identify an obvious source of systematic error in extrapolation
based techniques, namely the bottleneck at the telescope’s
inbound link, and suggest a solution to correct this error.

A. Estimating the Access Bandwidth of Infectees

The access bandwidth of the population of infected ma-
chines is an important variable in the dynamics of the spread
of a worm. Using the ability to deduce the state of the PRNG
at an infectee, we can infer this quantity, as follows. The
Witty worm uses the sendto system call, which is a blocking
system call by default in Windows: the call will not return till
the packet has been successfully written to the buffer of the
network interface. Thus, no worm packets are dropped either
in the kernel or in the buffer of the network interface. But
the network interface can clear out its buffer at most at its
transmission speed. Thus, the use of blocking system calls
indirectly clocks the rate of packet generation of the Witty
worm to match the maximum transmission bandwidth of the
network interface on the infectee.

We estimate the access bandwidth of an infectee as follows.
Let P; and P; be two packets from the same infectee, received
at the telescope at time ¢; and t; respectively. Using the
mechanism developed in Section IV-A we can deduce X;
and X, the state of the PRNG at the sender when the two
respective packets were sent. Now, we can simulate the LC
PRNG with an initial state of X; and repeatedly apply Eqn 1
till the state advances to X;. The number of times Eqn 1 is
applied to get from X; to X is the value of j — 4. Since it
takes 4 cranks of the PRNG to construct each packet (lines
3-5, in Fig. 2), the total number of packets between P; and
P; is (j —i)/4. Thus the access bandwidth of the infectee is
approximately average_packetsize x (j —1i)/4* 1/(t; — t;).
While we can compute it more precisely, since reproducing
the PRNG sequence allows us to extract the exact size of each
intervening packet sent, for convenience we will often use the
average payload size, which works out to 1070 bytes including
UDP, IP and Ethernet headers. Thus, the transmission rate can
be computed as %‘%‘;*8 = 2140 tj ::i bits per second.

Figure 4 shows the estimates of access bandwidth of in-
fectees® that appeared at the CAIDA telescope from 05:01
AM to 06:01 AM UTC (i.e., starting about 15 minutes after
the worm’s release). The x-axis shows the estimated access
bandwidth in bits per second on log scale, and the y-axis

SWe ignore infectees that contributed < 20 packets.

9000

8000 b

7000 - B

6000 b

5000 b

Rank

4000 b

3000 b

2000]

1000 r]

100000 1e+06 1e+07 1e+08
Estimated access bandwidth (bits per sec.)

0
10000 1e+09

Fig. 4.

Access bandwidth of Witty infectees estimated using our technique.

1e+09

1e+08 |

16407 | P 1

CAIDA telescope (bits per sec.)

1e+06 |) —

100000 ' ' '
100000 1e+06 1e+07 1e+08

Wisconsin telescope (bits per sec.)

1e+09

Fig. 5. Comparison of estimated access bandwidth using data from two
telescopes.

shows the rank of each infectee in increasing order. It is
notable in the figure that about 25% of the infectees have
an access bandwidth of 10 Mbps while about 50% have a
bandwidth of 100 Mbps. This corresponds well with the pop-
ular workstation configurations connected to enterprise LANs
(a likely description of a machine running the ISS software
vulnerable to Witty), or to home machines that include an
Ethernet segment connecting to a cable or DSL modem.

We use the second set of observations, collected indepen-
dently at the Wisconsin telescope (located far from the CAIDA
telescope in terms of both geographic and network distance), to
test the accuracy of our estimation, as shown in Figure 5. Each
point in the scatter plot represents a source observed in both
datasets, with its and y coordinates reflecting the estimates
from the Wisconsin and CAIDA observations, respectively.
Most points are located very close to the y = z line, signifying
close agreement. The small number of points (about 1%)
that are significantly far from the y = z line merit further
investigation. We believe these reflect NAT effects invalidating

9000

8000 b

7000 - B

6000 b

5000 b

Rank

4000 b

3000 b

2000]

1000 r]

100000 1e+06 1e+07 1e+08
Estimated effective bandwidth (bits per sec.)

0
10000 1e+09

Fig. 6. Effective bandwidth of Witty infectees.

1e+09

1e+08

1e+07

1e+06

100000

Effective bandwidth (bits per sec.)

10000 | ‘
10000 100000 1e+06 1e+07 1e+08
Access bandwidth (bits per sec.)

1e+09

Fig. 7. Scatter-plot of estimated bandwidth using the two techniques.

our inferences concerning the amount of data a “single” source
sends during a given interval.

B. Extrapolation-based estimation of effective bandwidth

Previous analyses of telescope data (e.g., [19]) used a simple
extrapolation-based technique to estimate the bandwidth of the
infectees. The reasoning is that given a telescope captures a /8
address block, it should see about 1/256 of the worm traffic.
Thus, after computing the packets per second from individual
infectees, one can extrapolate this observation by multiplying
by 256 to estimate the total packets sent by the infectee in the
corresponding period. Multiplying this number by the average
packet size (1070 bytes for Witty) gives the extrapolation-
based estimate of the bandwidth of the infectee. Notice that
this technique is not measuring the access bandwidth of the
infectee, but rather the effective bandwidth, i.e., the rate at
which packets from the infectee are actually delivered across
the network.

Figure 6 shows the estimated bandwidth of the same
population of infectees as in Fig. 4, computed using the

12000

10000 + b

8000 b

6000 - b

4000 - ,

Packets per second

2000]

0 L L L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time (sec)

Fig. 8. Aggregate worm traffic in pkts/sec as actually logged at the telescope.

extrapolation technique. The effective bandwidth so computed
is significantly lower than the access bandwidth of the entire
population. To explore this further, we draw a scatter-plot
of the estimates using both techniques in Fig. 7. Each point
corresponds to the PRNG-estimated access bandwidth (x axis)
and extrapolation-based effective bandwidth (y axis). The
modes at 10 and 100 Mbps in Fig. 4 manifest as clusters
of points near the lines = 107 and 2 = 108, respectively.
As expected, all points lie below the diagonal, indicating that
the effective bandwidth never exceeds the access bandwidth,
and is often lower by a significant factor. During infections
of bandwidth-limited worms, i.e., worms such as Witty that
send fast enough to potentially consume all of the infectee’s
bandwidth, mild to severe congestion, engendering moderate
to significant packet losses, is likely to occur in various
portions of the network.

Another possible reason for observing diminished effective
bandwidth is multiple infectees sharing a bottleneck, most
likely because they reside within the same subnet and contend
for a common uplink. Indeed, this effect is noticeable at
/16 granularity. That is, sources exhibiting very high loss
rates (effective bandwidth < 10% of access bandwidth) are
significantly more likely to reside in /16 prefixes that include
other infectees, than are sources exhibiting lower loss rates
(effective > 50% access). For example, only 20% of the
sources exhibiting high loss reside alone in their own /16,
while 50% of those exhibiting lower loss do.

C. Telescope fidelity

An important but easy-to-miss feature of Fig. 7 is that the
upper envelope of the points is not the line y = x but rather
y &~ 0.7z, which shows up as the upper envelope of the scatter
plot lying parallel to, but slightly below, the diagonal. This
implies either a loss rate of nearly 30% for even the best
connected infectees, or a systematic error in the observations.
Further investigation immediately reveals the cause of the
systematic error, namely congestion on the inbound link of
the telescope. Figure 8 plots the packets received during one-

1e+09

1e+08 |

1e+07 |

1e+06 |

CAIDA telescope (bits per sec.)

100000

1e+06 1e+07 1e+08

10000
10000

100000
Wisconsin telescope (bits per sec.)

1e+09

Fig. 9. Comparison of effective bandwidth as estimated at the two telescopes.

second windows against time from the release of the worm.
There is a clear ramp-up in aggregate packet rate during the
initial 800 seconds after which it settles at approximately
11,000 pkts/sec. For an average packet size of 1,070 bytes,
a rate of 11,000 pkts/sec corresponds to 95 Mbps, nearly
the entire inbound bandwidth of 100 Mbps of the CAIDA
telescope at that time.®

Fig. 8 suggests that the telescope may not have suffered
any significant losses in the first 800 seconds of the spread
of the worm. We verified this using a scatter-plot similar to
Fig. 7, but only for data collected in the first 600 seconds
of the infection. In that plot, omitted here due to lack of
space, the upper envelope is indeed y = z, indicating that the
best connected infectees were able to send packets unimpeded
across the Internet, as fast as they could generate them.

A key point here is that our ability to determine access
bandwidth allows us to quantify the 30% distortion’ at the
telescope due to its limited capacity. In the absence of this
fine-grained analysis, we would have been limited to noting
that the telescope saturated, but without knowing how much
we were therefore missing.

Figure 9 shows a scatter-plot of the estimates of effective
bandwidth as estimated from the observations at the two
telescopes. We might expect these to agree, with most points
lying close to the y = x line, other than perhaps for differing
losses due to saturation at the telescopes themselves, for which
we can correct. Instead, we find two major clusters that lie
approximately along y = 1.4z and y = =x/1.2. These lie
parallel to the y = z line due to the logscale on both axes.
We see a smaller third cluster below the y = « line, too.
These clusters indicate systematic divergence in the telescope
observations, and not simply a case of one telescope suffering
more saturation losses than the other, which would result in a

SWe can attribute the missing 5 Mbps to other, ever-present “background
radiation” that is a constant feature at such telescopes [16].

"The distortion is not static but evolves with the spread of the worm. By
tracking changes in the slope of the upper envelope, we can infer the value
of the distortion against time throughout the period of activity of the worm.

CAIDA > Wisc.*1.05 || Wisc. >CAIDA*1.05

Domains TLD # Domains TLD
53 .edu 64 .net
17 .net 35 .com
7 .Jp 9 .edu
5 .nl 7 .cn
5 .com 5 .nl
5 .ca 4 .ru
3 .tw 3 .Jjp
3 .gov 3 .gov
25 other 19 other

TABLE 1

DOMAINS WITH DIVERGENT ESTIMATES OF EFFECTIVE BANDWIDTH.

single line either above or below y = x.

To analyze this effect, we took all of the sources with an
effective bandwidth estimate from both telescopes of more
than 10 Mbps. We resolved each of these to domain names
via reverse DNS lookups, taking the domain of the responding
nameserver if no PTR record existed. We then selected a
representative for each of the unique second-level domains
present among these, totaling 900. Of these, only 29 domains
had estimates at the two telescopes that agreed within 5% after
correcting for systematic telescope loss. For 423 domains, the
corrected estimates at CAIDA exceeded those at Wisconsin
by 5% or more, while the remaining 448 had estimates at
Wisconsin that exceeded CAIDA’s by 5% or more.

Table I lists the top-level domains for the unique second-
level domains that demonstrated > 5% divergence in estimated
effective bandwidth. Owing to its connection to Internet-2, the
CAIDA telescope saw packets from .edu with significantly
fewer losses than the Wisconsin telescope, which in turn had a
better reachability from hosts in the . net and . com domains.
Clearly, telescopes are not “ideal” devices, with perfectly
balanced connectivity to the rest of the Internet, as implicitly
assumed by extrapolation-based techniques. Rather, what a
telescope sees during an event of large enough volume to
saturate high-capacity Internet links is dictated by its specific
location on the Internet topology. This finding complements
that of [5], which found that the (low-volume) background ra-
diation seen at different telescopes likewise varies significantly
with location, beyond just the bias of some malware to prefer
nearby addresses when scanning.

V1. DEDUCING THE SEED AND RELATED MEASUREMENTS
A. Cracking the seeds — System uptime

We now describe how we can use the telescope observations
to deduce the exact values of the seeds used to (re)initialize
Witty’s PRNG. Recall from Fig. 2 that the Witty worm
attempts to open a disk after every 20,000 packets, and reseeds
its PRNG on success. To get a seed with reasonable local en-
tropy, Witty uses the value returned by the Get _Tick_Count
system call, a counter set to zero at boot time and incremented
every millisecond.

In Section IV-A we have developed the capability to reverse-
engineer the state of the PRNG at an infectee from packets

received at the telescope. Additionally, Eqns 1 and 2 give us
the ability to crank the PRNG forwards and backwards to
determine the state at preceding and successive packets. Now,
for a packet received at the telescope, if we could identify
the precise number of calls to the function rand between
the reseeding of the PRNG and the generation of the packet,
simply cranking the PRNG backwards the same number of
steps would reveal the value of the seed. The difficulty here
is that for a given packet we do not know which “generation”
it is since the PRNG was seeded. (Recall that we only see a
few of every thousand packets sent.) We thus have to resort
to a more circuitous technique.

We split the description of our approach into two parts. The
first part describes a technique for identifying a small range in
the orbit (permutation sequence) of the PRNG where the seed
must lie. The second part describes a geometric algorithm for
finding the seeds from this candidate set.

1) Identifying a limited range within which the seed must
lie: Figure 10 shows a graphical view of our technique
for restricting the range where the seed can potentially lie.
Figure 10(a) shows the sequence of packets as generated at the
infectee. The straight line at the top of the figure represents the
permutation-space of the PRNG, i.e., the sequence of numbers
Xo,X1,---,Xo32_1 as generated by the PRNG. The second
horizontal line in the middle of the figure represents a small
section of this sequence, blown-up to show the individual
numbers in the sequence as ticks on the horizontal line. Notice
how each packet consumes exactly four random numbers,
represented by the small arcs straddling four ticks.

Only a small fraction of packets generated at the infectee
reach the telescope. Figure 10(b) shows four packets received
at the telescope. By cranking forward from the PRNG’s state
at the first packet until the PRNG reaches the state at the
second packet, we can determine the precise number of calls
to the rand function in the intervening period. In other words,
if we start from the state corresponding to the first packet
and apply Eqn 1 repeatedly, we will eventually (though see
below) reach the state corresponding to the second packet,
and counting the number of times Eqn 1 was applied gives
us the precise number of random numbers generated between
the departure of these two packets from the infectee. Note that
since each packet consumes four random numbers (the inner
loop of lines 2-7 in Fig. 2), the number of random numbers
will be a multiple of four.

However, sometimes we find the state for a packet received
at the telescope does not lie within a reasonable number
of steps (300,000 calls to the PRNG) from the state of
the preceding packet from the same infectee. This signifies
a potential reseeding event: the worm finished its batch of
20,000 packets and attempted to open a disk to overwrite a
random block.

Recall that there are two possibilities: the random disk
picked by the worm exists, in which case it overwrites a
random block and (regardless of the success of that attempted
overwrite) reseeds the PRNG, jumping to an arbitrary loca-
tion in the permutation space (control flowing through lines

Permutation Space

20,000 packets 20,000 packets

Seed Failed Disk Write

(a) Sequence of packets generated at the
infectee.

Permutation Space

. e
Lo4x 4y

Pkt Pkt Pkt Pkt

(b) Packets seen at the telescope. Notice
how packets immediately before or after a
failed disk-write are separated by 4z + 1

Permutation Space

X, X,»
//// o) ransla acl
e Translate back by 60,000

A ‘
W ji N

First Translaté back by 40,000

Pkt after Translate back by 20,000

Reseeding

(c) Translating these special intervals back by
multiples of 20,000 gives bounds on where the
seed can lie.

cranks of the PRNG rather than 4z.

Fig. 10. Restricting the range where potential seeds can lie.

8—9—10—1—2 in Fig. 2); or the disk does not exist, in which
case the worm continues for another 20,000 packets without
reseeding (control flowing through lines 8—+11—2 in Fig. 2).
Note that in either case the worm consumes a random number
in picking the disk.

Thus, every time the worm finishes a batch of 20,000
packets, we will see a discontinuity in the usual pattern of 4z
random numbers between observed packets. We will instead
either find that the packets correspond to 4z + 1 random
numbers between them (disk open failed, no reseeding); or that
they have no discernible correspondence (disk open succeeded,
PRNG reseeded and now generating from a different point in
the permutation space).

This gives us the ability to identify intervals within which
either failed disk writes occurred, or reseeding events occurred.
Consider the interval straddled by the first failed disk write
after a successful reseeding. Since the worm attempts disk
writes every 20,000 packets, this interval translated back by
20,000 packets (80,000 calls to the PRNG) must straddle the
seed. In other words, the beginning of this special interval
must lie no more than 20,000 packets away from the reseeding
event, and its end must lie no less than that distance away.
This gives us upper and lower bounds on where the reseeding
must have occurred. A key point is that these bounds are in
addition to the bounds we obtain from observing that the worm
reseeded. Similarly, if the worm fails at its next disk write
attempt too, the interval straddling that failed write, when
translated backwards by 40,000 packets (160,000 calls to the
PRNG), gives us another pair of lower and upper bounds on
where the seed must lie. Continuing this chain of reasoning,
we can find multiple upper and lower bounds. We then take
the max of all lower bounds and the min of all upper bounds
to get the tightest bounds. Figure 10(c) illustrates this process.

2) A geometric algorithm to detect the seeds: Given this
procedure, for each reseeding event we can find a limited
range of potential in the permutation space wherein the new
seed must lie. (L.e., the possible seeds are consecutive over
a range in the permutation space of the consecutive 32-bit

random numbers as produced by the LC PRNG; they are not
consecutive 32-bit integers.) Note, however, that this may still
include hundreds or thousands of candidates, scattered over
the full range of 32-bit integers.

Which is the correct one? We proceed by leveraging two key
points: (i) for most sources we can find numerous reseeding
events, and (ii) the actual seeds at each event are strongly
related to one another by the amount of time that elapsed
between the events, since the seeds are clock readings. Re-
garding this second point, recall that the seeds are read off a
counter that tracks the number of milliseconds since system
boot-up. Clearly, this value increases linearly with time. So
if we observe two reseeding events with timestamps (at the
telescope) of ¢; and to, with corresponding seeds S; and Sa,
then because clocks progress linearly with time, (S2 — S1) =
(t2 — t1). In other words, if the infectee reseeded twice, then
the value of the seeds must differ by approximately the same
amount as the difference in milliseconds in the timestamps of
the two packets seen immediately after these reseedings at the
telescope. Extending this reasoning to k reseeding events, we
get (S;—5;) =~ (t;—t;), Vi,j : 1 < i,j < k. This implies that
the & points (¢;, S;) should (approximately) lie along a straight
line with slope 1 (angle of 45°) when plotting potential seed
value against time.

We now describe a geometric algorithm to detect such a
set of points in a 2-dimensional plane. The key observation
in our algorithm is that when k points lie close to a straight
line of a given slope, then looking from any one of these
points along that slope, the remaining points should appear
clustered in a very narrow band. More formally, if we project
an angular beam of width ¢ from any one of these points, then
the remaining points should lie within the beam, for reasonably
small values of §. On the other hand, other, randomly scattered
points on the plane will see a very small number of other points
in the beam projected from them.

The algorithm follows directly from the above observation.
It proceeds in iterations. Within an iteration, we project a
beam of width § = arctan0.1 = 0.1 along the 45° line from

160 [r
140]
120 B
8
3 100 1
<
2 80 .
[0
5
=] 60 b
z
40 7
20 b
0 ‘
0 10 20 30 40 50
Uptime (days)
Fig. 11. Number of infectees with a system uptime of the given number of
days.

each point in the plane. The point is assigned a score equal
to the number of other points that lie in its beam. Actual
seeds are likely to get a high score because they would all
lie roughly along a 45° line. At the end of the iteration, all
points with a score smaller than some threshold (say k/2)
are discarded. Repeating this process in subsequent iterations
quickly eliminates all but the k£ seeds, which keep supporting
high scores for each other in all iterations.

We find this algorithm highly effective given enough reseed-
ing events. Figure 11 presents the results of the computation
of system uptime of 784 machines in the infectee population.
These infectees were chosen from the set that contributed
enough packets to allow us to use our mechanism for esti-
mating the seed. Since the counter used by Witty to reseed
its PRNG is only 32 bits wide, it will wrap-around every 232
milliseconds, which is approximately 49.7 days. The results
could potentially be distorted due to this effect (but see below).

There is a clear domination of short-lived machines, with
approximately 47% having uptimes of less than five days. On
the other hand, there are just five machines that had an uptime
of more than 40 days. The sharp drop-off above 40 days leads
us to conclude that the effects due to the wrapping-around of
the counter are negligible.

The highest number of machines were booted on the same
day as the spread of the worm. There are prominent troughs
during the weekends — recall that the worm was released on
a Friday evening Pacific Time, so the nearest weekend had
passed 5 days previously — and heightened activity during
the working days.

One feature that stands out is the presence of two modes,
one at 29 days and the second at 36/37 days. On further
investigation, we found that the machines in the first mode
all belonged to a set of 135 infectees from the same /16
address block, and traceroutes revealed they were situated at
a single US military installation. Similarly, machines in the
second mode belonged to a group of 81 infectees from another
/16 address block, belonging to an educational institution.
However, while machines in the second group appeared at the

Number of Disks 1 2 3
Number of Infectees || 52 | 32 | 12

TABLE II
DISK COUNTS OF 100 INFECTEES.

telescope one-by-one throughout the infection period, 110 of
the 135 machines in the first group appeared at the telescope
within 10 seconds of Witty’s onset. Since such a fast spread
is not feasible by random scanning of the address space, the
authors of [19] concluded that these machines were either
part of a hit-list or were already compromised and under the
control of the attacker. Because we can fit the actions of these
infectees with running the full Witty code, including PRNG
reseeding patterns that match the process of overwriting disk
blocks, this provides evidence that these machines were not
specially controlled by the attacker (unlike the Patient Zero
machine), and thus we conclude that they likely constitute a
hit-list. Returning then to the fact that these machines were
all rebooted exactly 29 days before the onset of the worm,
we speculate that the reboot was due to a facility-wide system
upgrade. This upgrade could have been due to the installation
of system software such as Microsoft updates (a critical update
had been released on Feb. 10, about 10 days before the
simultaneous system reboots), or perhaps the installation of the
vulnerable ISS products themselves. We might then speculate
that the attacker knew about the ISS installation at the site
(thus enabling them to construct a hit-list), which, along with
the attacker’s rapid construction of the worm indicating they
likely knew about the vulnerability in advance [22], suggests
that the attacker was an ISS “insider.”

B. Number of disks

Once we can recover the seed used at the beginning of a
sequence of packets, we can use its value as an anchor to
mark off the precise subsequent actions of the worm. Recall
from Fig. 2 that the worm generates exactly 20,000 packets in
its inner loop, using 80,000 random numbers in the process.
After exiting the inner loop, the worm uses three bits from
the next random number to decide which physical disk it will
attempt to open. Starting from the seed, this is exactly the
80,001th number in the sequence generated by the PRNG.
Thus, knowledge of the seed tells us exactly which disk the
worm attempts to open. Furthermore, as discussed above we
can tell whether this attempt succeeded based on whether the
worm reseeds after the attempt. We can therefore estimate
the number of disks on the infectee, based on which of the
attempts for drives in the range O to 7 lead to a successful
return from the open system call. Table II shows the number
of disks for 100 infectees, calculated using this approach. The
majority of infectees had just one or two disks, while we find a
few with up to five disks. Since the installation of end-system
firewall software was a prerequisite for infection by Witty,
the infectee population is more likely to contain production
servers with multiple disks.

1000

100

tinfection tscan (sec.)
o

-100

-1000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

tscan (S€C.)
Fig. 12. Scans from infectees, targeted to other victims.
500
450 |]
400 b
350 b
2
8 300]
12}
o 250 ,
[0}
o
E 200 - b
=)
z
150 b
100 - b
50 In WWNMH b
0

-5000 -4000 -3000 -2000 -1000 O 1000 2000 3000 4000 5000
tinfection tscan (sec.)

Fig. 13. Number of scans in 10 second buckets.

C. Exploration of infection graph

Knowledge of the precise seeds allows us to reconstruct the
complete list of packets sent by each infectee. Additionally,
the large size of our telescope allows us to detect an infectee
within the first few seconds (few hundred packets) of its
infection. Therefore if an infectee is first seen at a time 7T,
we can inspect the list of packets sent by all other infectees
active within a short preceding interval, say (7' — 10 sec,T),
to see which sent a packet to the new infectee, and thus is the
infectee’s likely “infector.” to select the most likely “infector”.

The probability of more than one infectee sending a worm
packet to the same new infectee at the time of its infection is
quite low. With about 11,000 pkts/sec seen at a telescope with
1/256 of the entire Internet address space, and suffering 30%
losses due to congestion (Section V-C), the aggregate scanning
rate of the worm comes out to around 256 - 11,000/0.7 =
4-10° pkts/sec. With more than 4 - 10° addresses to scan, the
probability that more than one infectee scans the same address
within the same 10 second interval is around 1%.

Figure 12 shows scan packets from infected sources that
targeted other infectees seen at the telescope. The z-coordinate

gives tsan, the packet’s estimated sending time, and the y-
coordinate gives the difference between Zipsection, the time when
the target infectee first appeared at the telescope, and #scan. A
small positive value of Zipfection — tscan Taises strong suspicions
that the given scan packet is responsible for infecting the
given target. Negative values mean that the target was already
infected, while larger positive values imply that the scan failed
to infect the target for some reason — it was lost,® or blocked
due to the random destination port it used, or simply the target
was not connected to the Internet at that time. (Note that
the asymptotic curves at the top and bottom correspond to
truncation effects reflecting the upper and lower bounds on
infection times.)

The clusters at extreme values of #infection —tscan i Figure 12
mask a very sharp additional cluster, even using the log-
scaling. This lies in the region 0 < #infection — tscan < 10.
In Figure 13, we plot the number of scans in 10 second
buckets against tipfection — fscan- 1he very central sharp peak
corresponds to the interval 0-to-10 seconds — a clear mark
of the dispatch of a successful scan closely followed by the
appearance of the victim at the telescope. We plan to continue
our investigation of infector-infectee relationships, hoping to
produce an extensive “lineage” of infection chains for use in
models of worm propagation.

D. Correlated bandwidth and topology effects

Our ability to precisely determine infectee access bandwidth
allows us to make detailed inferences of network topology that
would be otherwise inaccessible. For example, we located a
group of 23 infected systems — part of a larger group of
32 machines in a /24 address block — for which, when the
first system became infected, we computed both an access
bandwidth and an effective bandwidth of just under 10 Mbps,
suggesting an unfettered 10 Mbps Ethernet access link. When
subsequent infectees began to appear (each marked by a
vertical line in Figure 14(a)), the existing infectees’ effective
bandwidth drops in unison, suggesting shared congestion.
Note that the aggregate effective bandwidth initially increases,
leveling off at a 100 Mbps shared bottleneck for the entire
group.

The puzzle here is the fact that the access bandwidth
of these 23 hosts also dropped in lock-step (Figure 14(b)),
suggesting the presence of a congestion-feedback mechanism
in operation. The most likely explanation is back-pressure
based congestion control from an Ethernet switch [4], where a
switch running out of buffer space generates collision frames
across ports running at 10 Mbps in half-duplex mode, causing
the hosts connected at the corresponding ports to back-off and
then attempt a retransmit. In the case of Witty’s infectees,
such back pressure would delay the return of the blocking
sendto system calls, resulting in a slower packet generation
rate at the infectee, which we can measure since we have
can recover the sender’s PRNG state. With an increasing
number of infectees connected to the same switch, congestion

8Recall that the effective bandwidth of most infectees is much lower than
their access bandwidth, indicating heavy loss in the traffic they generated.

1e+09

tofal of 25 infectées e
s
[0
(%]
g

@ 1e+08 |
£
Ny
5
=
©
=
8
o 1e+07

=
k31
2
]

1e+06 \ It L \.1 1 \3 L L : \‘

0 500 1000 1500 2000 2500 3000 3500 4000

Time (sec.)

1e+07 T
_ 9e+06 [.
S
Q
w
5 8e+06 | E
o
i)
S 7e+06 | E
<
°
£ 6e+06 [.
c
%]
Ke)
@ 5e+06 | .
Q
Q
<
4e+06 | e
Se+06 \ \ il 1 \ L L L :
0 500 1000 1500 2000 2500 3000 3500 4000

Time (sec.)

Fig. 14. Effective and access Bandwidth estimates for 23 synchronized infectees in the same /24 address block. Vertical lines represent the first appearance

of a new infectee. 23 individual lines are plotted, but they heavily coincide.

and the resulting feedback from the switch would increase
in frequency, explaining the decrease in estimated access
bandwidth with time (Figure 14(b)) as more and more hosts
become infected.

With the above reasoning, we constructed a hypothesis that
the systems were all connected by a single switch, with each
switch port running at 10 Mbps except for the 100 Mbps uplink
to the rest of the network. With increasing load at the switch,
it would run out of buffer space with increasing frequency,
sending congestion feedback to slow the senders down till their
aggregate sending rate fell below the capacity of its 100 Mbps
uplink.

We were able to verify our hypothesis by contacting a
network engineer at the site in question, who confirmed that
as of March 2004, that particular network was still using
10 Mbps Ethernet with 100 Mbps uplinks, with building
blocks consisting of Cisco Catalyst 1924 switches containing
24 10 Mbps ports and a 100 Mbps uplink, and that the 10 Mbps
ports were running in half-duplex mode.

VII. DISCUSSION

While we have focused on the Witty worm in this paper, the
key idea is much broader. Our analysis demonstrates the po-
tential richness of information embedded in network telescope
observations, ready to be revealed if we can frame a precise
model of the underlying processes generating the observations.
In this section we discuss the breadth and limitations of the
scope of our analysis, and examine general insights that go
beyond the specific instance of the Witty worm.

A. Candidates for similar analysis

The binary code of all Internet worms is available by defi-
nition, making them candidates for disassembly and analysis.
Similarly, copies of many scanning and flooding tools have
been captured by white hat researchers, and traces observed at
telescopes of probing or attack traffic (or backscatter) from the
operation of such tools provide candidates for similar analysis.

A preliminary assessment we performed of ten well-known
DoS attack tools revealed that six of them use simple PRNGs
with unsophisticated seeds, while the other four use no random
number generation at all. Even with limited knowledge of
the operation of such tools, we should in principle be able
to analyze logs of their attack traffic or backscatter with a
similar intent of reconstructing the sequence of events in the
automation of the attack, potentially leading to information
about the attacking hosts, their interaction with the network,
and other forensic clues.

B. Diversity of PRNGs

Our analysis was greatly facilitated by the use of a linear
congruential PRNG by Witty’s author. Reverse-engineering the
state of a more complex PRNG could be much more difficult.
In the extreme, a worm using a cryptographically strong hash
function as its PRNG, with a well-chosen key of sufficient
length, would greatly resist such reverse engineering. However,
there are several practical reasons that support the likelihood
of many attackers using simpler PRNGs.

Implementing good PRNGs is a complicated task [9], es-
pecially when constrained by limits on code size and the dif-
ficulty of incorporating linkable libraries. Large-scale worms
benefit greatly from as self-contained a design as possible,
with few dependencies on platform support, to maximize the
set of potential victims. Worms have also proven difficult to
fully debug — virtually all large-scale worms have exhib-
ited significant bugs — which likewise argues for keeping
components as simple as possible. Historically, worm authors
have struggled to implement even the LC PRNG correctly.
The initial version of Code Red failed to seed the PRNG
with any entropy, leading to all copies of the worm scanning
exactly the same sequence of addresses [2]. Slammer’s PRNG
implementation had three serious errors, one where the author
used a value of the parameter b in the LC equation (Eqn. 1)
that was larger than the correct value by 1 due to an incorrect
2’s complement conversion, another where this value was

subtracted from instead of added to the term aX; in Eqn 1, and
finally the (mis)use of an OR instruction rather than XOR to
clear a key register [12]. In addition, sources of local entropy at
hosts are often limited to a few system variables, complicating
the task of seeding the PRNG in a fashion strong enough to
resist analysis. Thus it is conceivable that worm authors will
have difficulty implementing bug-free, compact versions of
sophisticated PRNGs.

In addition, today’s worm authors have little incentive to
implement a complex PRNG. As long as their goals are
confined to effectively scanning the IP address space and
maximizing the worm’s infection rate, simple PRNGs suffice.
Hiding one’s tracks while releasing a worm can already be
accomplished by using a chain of compromised victims as
stepping stones. Indeed, the fact that Witty’s author left Patient
Zero running with a separate program for spreading the worm
was purely a mistake on his/her part. As discussed earlier, the
code it ran scanned a very small subset of the IP address space,
and did not manage to produce even one infection during
scanning.

Thus, there are significant factors that may lead to the
continued use by worms of simple PRNGs such as LC, which,
along with the availability of disassembled code, will facilitate
the development of structural models of worm behavior to
use in conjunction with telescope observations for detailed
reconstructions.

C. General observations from this work

Our study has leveraged the special conditions produced
by a worm’s release to measure numerous features of its
victim population and the network over which it spread. While
specific estimation tricks developed in this paper might not be
applicable for other telescope observations in a “cookbook”
manner, the insight that telescope observations carry rich in-
formation that can be heavily mined armed with a sufficiently
detailed model of the underlying source processes is of major
significance for the future study of such data.

Understanding the structure of the scanning techniques
used by worms (and empirical data on hitherto unmeasured
quantities such as distribution of access bandwidth) can be
crucial for developing correct models of their spread — a case
made for example by our observation of the doubly-scanned
and never-scanned portions of the address space, and their
multi-factored impact on the worm’s growth.

Finally, we would emphasize that the extraction of the
features we have assessed was a labor-intensive process.
Indeed, for many of them we did not initially apprehend
even the possibility of analyzing them. This highlights not
only the difficulty of such a forensic undertaking, but also its
serendipitous nature. The latter holds promise that observa-
tions of other Internet-scale events in the future, even those
of significantly different details or nature, will likely remain
open to the possibility of such analysis.

VIII. CONCLUSIONS

A worm’s propagation is a rare but spectacular event in
today’s networks. Apart from the obvious disruptions and

damage, worms also stress the network in unique ways and at
scales unmatched by any controlled measurement experiments.
One could say that a worm’s release illuminates, for a few
moments, dark corners of the network just as supernovae
illuminate dark and distant corners of the universe, providing
rich observations to telescopes that gather a mere sliver of
the enormous radiant flux. But within the overwhelming mass
of observed data lies a very structured process that can be
deciphered and understood — if studied with the correct
model.

We have shown how a fine-grained understanding of the
exact control flow of a particular worm — especially its
seeding and use of a pseudo-random number generator —
when coupled with network telescope data enables a detailed
reconstruction of nearly the entire chain of events that followed
the worm’s release. In the process we have unearthed mea-
surements of quantities such as access bandwidth and system
up-time that are otherwise unobservable to the “naked eye” of
researchers studying systems from afar. These measurements
have applicability to a number of modeling and simulation
studies, both in particular to worm propagation analysis, and
more generally as a source of rarely-available empirical data.
Finally, we have demonstrated the forensic power that such
analysis can provide, marshalling strong evidence that the
Witty worm specifically targeted a US military base and was
launched via an IP address corresponding to a European ISP.

ACKNOWLEDGMENTS

This work was supported by the National Science Foun-
dation under the following grants: Collaborative Cybertrust
NSF-0433702, ITR/ANI-0205519, NRT-0335290, and ANI-
0238315, for which we are grateful. We thank Colleen Shan-
non and David Moore at CAIDA, and Paul Barford and Vinod
Yegneswaran at the University of Wisconsin for providing ac-
cess to the telescope traces and answering numerous questions
about them, and our CCIED colleagues for valuable feedback.
We would also like to thank Clark Gaylord.

Support for the Witty Worm Dataset and the UCSD Network
Telescope are provided by Cisco Systems, Limelight Net-
works, the US Department of Homeland Security, the National
Science Foundation, and CAIDA, DARPA, Digital Envoy, and
CAIDA Members.

REFERENCES

[1] Michael Bailey, Evan Cooke, Farnam Jahanian, Jose Nazario, and David
Watson. The Internet motion sensor: A distributed blackhole monitoring
system. In Proc. NDSS, 2005.

[2] CAIDA. CAIDA Analysis of Code-Red, http://www.caida.org/analysis/
security/code-red/.

[3] CERT. CERT Advisory CA-1999-04 Melissa Macro Virus, http:/

www.cert.org/advisories/CA-1999-04.html.

Catalyst 1900 series installation and configuration guide. http://www.

cisco.com/en/US/products/hw/switches/ps574/products_installation_and -

configuration_guide_chapter09186a008007d9b4.htm1#37606.

[5] Evan Cooke, Michael Bailey, Z. Morley Mao, David Watson, Farnam
Jahanian, and Danny McPherson. Toward understanding distributed
blackhole placement. In Proc. ACM CCS Workshop on Rapid Malcode
(WORM), October 2004.

[6] Domas Mituzas. FreeBSD Scalper Worm, http://www.dammit.1t/apache-
worm/.

[4

=

[7]
[8]

[9]
[10]

(1]

[12]

[13]

[14]

[15]

[16]

(171
[18]
[19]
[20]

[21]

[22]

[23]

[24]

eEye Digital Security. .ida “Code Red” Worm, http://www.eeye.com/
html/Research/Advisories/AL20010717.html.

Mark Eichin and Jon Rochlis. With microscope and tweezers: An
analysis of the Internet virus of november 1988. In Proc. IEEE
Symposium on Research in Security and Privacy, 1989.

Donald E. Knuth. The Art of Computer Programming, Second Edition,
volume 2, Seminumerical Algorithms. Addison-Wesley, 1981.

K. Kortchinsky. Black Ice worm disassembly.
http://www.caida.org/analysis/security/witty/BlacklceWorm.html.

D. Moore, C. Shannon, G. Voelker, and S. Savage. Network telescopes:
Technical report. Technical report, Cooperative Association for Internet
Data Analysis (CAIDA), July 2004.

David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart
Staniford, and Nicholas Weaver. Inside the Slammer Worm. I[EEE
Security & Privacy, pages 33-39, July/August 2003.

David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart
Staniford, and Nicholas Weaver. The Spread of the Sapphire/Slammer
‘Worm, 2003.

David Moore, Colleen Shannon, and k claffy. Code-Red: a Case Study
on the Spread and Victims of an Internet Worm. In Proceedings of
the Second Internet Measurement Workshop, pages 273-284, November
2002.

David Moore, Geoffrey M. Voelker, and Stefan Savage. Inferring Internet
Denial-of-Service Activity. In Proceedings of the 10th USENIX Security
Symposium, pages 9-22. USENIX, August 2001.

Ruoming Pang, Vinod Yegneswaran, Paul Barford, Vern Paxson, and
Larry Peterson. Characteristics of Internet background radiation. In
Proc. ACM Internet Measurement Conference, October 2005.

F secure Inc. Global slapper worm information center, http://www.f-
secure.com/slapper/.

C. Shannon and D. Moore. The caida dataset on the witty worm, March
19-24 2004. http://www.caida.org/passive/witty/.

C. Shannon and D. Moore. The spread of the Witty worm. IEEE Security
and Privacy, 2(4):46-50, August 2004.

Eugene Spafford. The Internet worm program: An analysis. purdue
technical report csd-tr-823, 1988.

Stuart Staniford and Vern Paxson and Nicholas Weaver. How to Own
the Internet in Your Spare Time. In Proceedings of the 11th USENIX
Security Symposium. USENIX, August 2002.

Nicholas Weaver and Dan Ellis. Reflections on Witty: Analyzing the
attacker. ;login:, pages 34-37, June 2004.

V. Yegneswaran, P. Barford, and D. Plonka. On the design and utility
of Internet sinks for network abuse monitoring. In Proc. of Symposium
on Recent Advances in Intrusion Detection, September 2004.

Cliff Changchun Zou, Weibo Gong, and Don Towsley. Code Red Worm
Propagation Modeling and Analysis. In Proceedings of the ACM CCS
2002 conference, November 2002.

