
White Paper: Honeypots

Reto Baumann, http://www.rbaumann.net
Christian Plattner, http://www.christianplattner.net

February 26, 2002

Contents

1 Abstract 1

2 Introduction 1

3 Honeypots 2
3.1 Honeypot Basics 2
3.2 Value of Honeypots 2
3.3 Comparison of available Honeypots 2

4 Concepts 3
4.1 Level of Involvement 3

4.1.1 Low-Involvement Honeypot 3
4.1.2 Mid-Involvement Honeypot 3
4.1.3 High-Involvement Honeypot 3
4.1.4 Overview 4

4.2 Network Topologies and Honeynets 4
4.2.1 Honeypot Location 4
4.2.2 Honeynets 5

4.3 Host based Information Gathering 5
4.3.1 Basic Possibilities 6
4.3.2 Microsoft Windows 6
4.3.3 UNIX derivatives 6

4.4 Network based Information Gathering . . 7
4.4.1 Firewall 8
4.4.2 IDS 8
4.4.3 Encrypted Connections 8

4.5 Active Information Gathering 8
4.6 Dangers 9
4.7 Protecting Third Parties 9
4.8 Limiting Risk 9
4.9 Attractiveness 10

5 Outlook 10

1 Abstract

A honeypot is used in the area of computer and Inter-
net security. It is a resource which is intended to be at-
tacked and compromised to gain more information about
the attacker and the used tools. It can also be deployed
to attract and divert an attacker from their real targets.
One goal of this paper is to show the possibilities of hon-
eypots and their use in a research as well as productive
environment.

Compared to an intrusion detection system, honey-
pots have the big advantage that they do not generate

false alerts as each observed traffic is suspicious, because
no productive components are running on the system.
This fact enables the system to log every byte that flows
through the network to and from the honeypot, and to
correlate this data with other sources to draw a picture
of an attack and the attacker.

This whitepaper consists of two parts. The first part
provides an overview and introduction to the different
classes of honeypots. The second part presents the main
concepts of honeypots in more detail.

The paper ends with a conclusion about the new tech-
nology of honeypots.

2 Introduction

Global communication is getting more important every
day. At the same time, computer crimes are increasing.
Countermeasures are developed to detect or prevent at-
tacks - most of these measures are based on known facts,
known attack patterns. As in the military, it is impor-
tant to know, who your enemy is, what kind of strategy
he uses, what tools he utilizes and what he is aiming for.
Gathering this kind of information is not easy but im-
portant. By knowing attack strategies, countermeasures
can be improved and vulnerabilities can be fixed. To
gather as much information as possible is one main goal
of a honeypot.

Generally, such information gathering should be done
silently, without alarming an attacker. All the gathered
information leads to an advantage on the defending side
and can therefore be used on productive systems to pre-
vent attacks.

A honeypot is primarily an instrument for informa-
tion gathering and learning. Its primary purpose is not
to be an ambush for the blackhat community to catch
them in action and to press charges against them. The
focus lies on a silent collection of as much information
as possible about their attack patterns, used programs,
purpose of attack and the blackhat community itself. All
this information is used to learn more about the black-
hat proceedings and motives, as well as their technical
knowledge and abilities. This is just a primary purpose
of a honeypot. There are a lot of other possibilities for
a honeypot - divert hackers from productive systems or
catch a hacker while conducting an attack are just two
possible examples.

Honeypots are not the perfect solution for solving or

1

preventing computer crimes. Honeypots are hard to
maintain and they need operators with good knowledge
about operating systems and network security. In the
right hands, a honeypot can be an effective tool for infor-
mation gathering. In the wrong, unexperienced hands,
a honeypot can become another infiltrated machine and
an instrument for the blackhat community.

This white paper will introduce some basic terms as
well as possibilities which can be used to implement a
working honeypot.

3 Honeypots

This chapter provides a definition of what a honeypot
is and looks closer at a honeypot’s value. Furthermore,
available products are shortly reviewed.

3.1 Honeypot Basics

The buzz word ”Honeypot” is spooking around. Dif-
ferent vendors claim that they offer honeypot products,
people are arguing about honeypots without having a
clear image of what a honeypot is. To clarify this is-
sue, a definition of what is meant when talking about
honeypots is provided.

L. Spitzner1 defines the term honeypot as follows:

A honeypot is a resource whose value is being
in attacked or compromised. This means, that a
honeypot is expected to get probed, attacked and
potentially exploited. Honeypots do not fix any-
thing. They provide us with additional, valuable
information.

In this paper, a slightly different definition is proposed:

A honeypot is a resource which pretends to be
a real target. A honeypot is expected to be at-
tacked or compromised. The main goals are the
distraction of an attacker and the gain of infor-
mation about an attack and the attacker.

Honeypots do not help directly in increasing a com-
puter network’s security. On the contrary, they do at-
tract intruders and can therefore attract some interest
from the Blackhat community on the network where the
honeypot is located.

3.2 Value of Honeypots

As mentioned, a honeypot can not be used to fix any-
thing. It is even worse, a honeypot can attract more
interest in a specific network than one would like. So
what can a honeypot provide, what can it be used for?

There are two categories of honeypots2 - production
honeypots and research honeypots. A production honey-
pot is used to help migrate risk in an organization while

1Lance Spitzner is member of a honeypot research group in the
United States (http://project.honeynet.net).

2As defined by Marty Roesch, creator of Snort

the second category, research, is meant to gather as much
information as possible. These honeypots do not add any
security value to an organization, but they can help to
understand the blackhat community and their attacks
as well as to build some better defenses against security
threats.

A honeypot is a resource which is intended to get com-
promised. Every traffic from and to a honeypot is suspi-
cious because no productive systems are located on this
resource. In general, every traffic from and to a hon-
eypot is unauthorized activity. All data collected by a
honeypot is therefore interesting data. A honeypot will
in general not produce an awful lot of logs because no
productive systems are running on that machine which
makes analyzing this data much easier. Data collected
by a honeypot is of high value and can lead to a bet-
ter understanding and knowledge which in turn can help
to increase overall network security. One can also argue
that a honeypot can be used for prevention because it can
deter attackers from attacking other systems by occupy-
ing them long enough and bind their resources. Against
most attacks nowadays (which are based on automated
scripts) a honeypot does not help deceiving individuals
as there are no persons to deceive.

If a honeypot does not get attacked, it is worthless.
Honeypots are normally located at a single point and
the probability can be quite small that an attacker will
”find” the honeypot. A honeypot does also introduce a
certain risk - blackhats could get attracted to the whole
network or a honeypot may get silently compromised.

3.3 Comparison of available Honeypots

This section provides a short overview of the available
products and solutions3. Table 1 shows an aggregation
of the most important factors.

ManTrap Specter DTK Custom

Involvement high low middle low - high
Expandable

√
-

√ √
Open Source - -

√
N/A

Freely available - -
√ √

Cost of ownership high low middle high
Logfile support

√ √ √
N/A

Notifications
√ √ √

N/A
services unl. 13 unl. N/A
Configuration diff easy mid N/A
GUI

√ √
- N/A

Table 1: Honeypot Comparison Table

Each available honeypot has different strengths.
Specter is easy to install and even easier to run due to
the nice graphical user interface. Unfortunately, its value
is not very high, as no real operating system is provided.
But this fact does also help in reducing the risk signifi-
cantly.

ManTrap, DTK and custom built honeypots are highly
customizable. Their value can be very high, as well as
their risk. Therefore their cost of ownership, which rep-
resents the outlay of the routine maintenance, is higher.

3ManTrap (http://www.recourse.com), Specter
(http://www.neoworx.com/products/specter/) and DTK
(http://www.all.net/dtk)

2

ManTrap’s main advantage over DTK and homegrown
honeypots is the provided GUI. It is very comfortable
to configure, analyze and manage this commercial solu-
tion.

4 Concepts

This chapter presents some basic honeypot and honeynet
concepts. It is mainly a theoretical approach without
looking at practical aspects. But most of the ideas can
be directly used in a custom made honeypot.

4.1 Level of Involvement

One characteristic of a honeypot is its level of involve-
ment. The level of involvement does measure the degree
an attacker can interact with the operating system.

4.1.1 Low-Involvement Honeypot

A low-involvement honeypot typically only provides cer-
tain fake services. In a basic form, these services
could be implemented by having a listener on a spe-
cific port. For example a simple netcat -l -p 80 >
/log/honeypot/port 80.log could be used to listen on port
80 (HTTP) and log all incoming traffic to a logfile. In
such a way, all incoming traffic can easily be recognized
and stored. With such a simple solution it is not possible
to catch communication of complex protocols. An initi-
ated SMTP4 handshake would not lead to much useful
information since no answering service is responding.

On a low-involvement honeypot there is no real oper-
ating system that an attacker can operate on. This will
minimize the risk significantly because the complexity of
an operating system is eliminated. On the other hand,
this is also a disadvantage. It is not possible to watch
an attacker interacting with the operating system, which
could be really interesting. A low-involvement honeypot
is like a one-way connection. We only listen, but we do
not ask questions ourselves. The role of this approach is
very passive.

Figure 1: Low-involvement honeypot: A low-
involvement honeypot does reduce risk to a minimum
through minimizing interaction with the attacker

4Simple Mail Transfer Protocol - used to send and receive e-
mails.

A low-involvement honeypot can be compared to an
passive IDS5, as both do not alter any traffic or interact
with the attacker or the traffic flow. They are used to
generate logs and alerts if incoming packets match cer-
tain patterns.

4.1.2 Mid-Involvement Honeypot

A mid-involvement honeypot provides more to interact
with, but still does not provide a real underlaying oper-
ating system. The fake daemons are more sophisticated
and have deeper knowledge about the specific services
they provide. At the same moment, the risk increases.
The probability that the attacker can find a security hole
or a vulnerability is getting bigger because the complex-
ity of the honeypot increases. A compromise of this sys-
tem is still unlikely and certainly no goal as there are no
security boundaries and logging mechanisms which are
built for this kind of events.

Through the higher level of interaction, more complex
attacks are possible and can therefore be logged and an-
alyzed. The attacker gets a better illusion of a real oper-
ating system. He has more possibilities to interact and
probe the system.

Figure 2: Mid-involvement honeypot: A mid-
involvement honeypot does interact with the attacker in
a minimal way

Developing a mid-involvement honeypot is complex
and time consuming. Special care has to be taken for
security checks as all developed fake daemons need to be
as secure as possible. The developed versions should not
suffer the same security holes as their real counterparts
because this is the main reason to substitute these with
fake variants. The knowledge for developing such a sys-
tem is very high as each protocol and service has to be
understood in detail.

4.1.3 High-Involvement Honeypot

A high-involvement honeypot has a real underlaying op-
erating system. This leads to a much higher risk as the
complexity increases rapidly. At the same time, the pos-
sibilities to gather information, the possible attacks as
well as the attractiveness increase a lot. One goal of

5Intrusion Detection System

3

a hacker is to gain root and to have access to a ma-
chine, which is connected to the Internet 24/7. A high-
involvement honeypot does offer such an environment.
As soon as a hacker has gained access, his real work and
therefore the interesting part begins.

Unfortunately the attacker has to compromise the sys-
tem to get this level of freedom. He will then have root
rights on the system and can do everything at any mo-
ment on the compromised system. As per se, this system
is no longer secure. Even the whole machine can not be
considered as secure. This does not matter if he is in a
jail, a sandbox or a VMWare6 box because there could
be ways to get out of these software boundaries.

Figure 3: High-involvement honeypot: A high-
involvement honeypot has great risk as the attacker can
compromise the system and use all its resources.

A high-involvement honeypot is very time consuming.
The system should be constantly under surveillance. A
honeypot which is not under control is not of much help
and can even become a danger or security hole itself. It
is very important to limit a honeypot’s access to the local
intranet, as the honeypot can be used by the blackhats
as if it was a real compromised system. Limiting out-
bound traffic is also an important point to consider, as
the danger once a system is fully compromised can be
reduced.

By providing a full operating system to the attacker,
he has the possibilities to upload and install new files.
This is where a high-involvement honeypot can show its
strength, as all actions can be recorded and analyzed.
Gathering new information about the blackhat commu-
nity is one main goal of a high-involvement honeypot and
legitimates the higher risk.

4.1.4 Overview

Each level of involvement has its advantages and disad-
vantages. Table 2 summarizes what has been seen so
far.

Choosing the lowest as possible level of involvement
should reduce the danger and risk as much as possible.
The required maintenance time should also be considered
when choosing a honeypot and its level of involvement.

6A tool to run multiple virtual machines on one physical system.
See http://www.vmware.com for more information.

Low Mid High

Degree of involvement low mid high
Real operating system - -

√
Risk low mid high
Information gathering connections requests all
Compromise wished - -

√
Knowledge to run low low high
Knowledge to develop low high mid-high
Maintenance time low low very high

Table 2: Overview of advantages and disadvantages of
each level of involvement

4.2 Network Topologies and Honeynets

This chapter will discuss the placement of honeypots in
a network as well as a special, more complex version of
honeypots - a so called honeynet.

4.2.1 Honeypot Location

A honeypot does not need a certain surrounding envi-
ronment as it is a standard server with no special needs.
A honeypot can be placed anywhere a server could be
placed. But certainly, some places are better for certain
approaches as others.

A honeypot can be used on the Internet as well as the
intranet, based on the needed service. Placing a honey-
pot on the intranet can be useful if the detection of some
bad guys inside a private network is wished. It is espe-
cially important to set the internal thrust for a honeypot
as low as possible as this system could be compromised,
probably without immediate knowledge.

If the main concern is the Internet, a honeypot can be
placed at two locations:

• In front of the firewall (Internet)

• DMZ7

• Behind the firewall (intranet)

Each approach has its advantages as well as disadvan-
tages. Sometimes it is even impossible to choose freely
as placing a server in front of a firewall is simply not
possible or not wished.

Figure 4: Placement of a honeypot

By placing the honeypot in front of a firewall (see fig-
ure 4 honeypot(1), the risk for the internal network does

7Demilitarized Zone, a network segment with is only partly ac-
cessible from the Internet.

4

not increase. The danger of having a compromised sys-
tem behind the firewall is eliminated.

A honeypot will attract and generate a lot of unwished
traffic like portscans or attack patterns. By placing a
honeypot outside the firewall, such events do not get
logged by the firewall and an internal IDS system will
not generate alerts. Otherwise, a lot of alerts would be
generated on the firewall or IDS.

Probably the biggest advantage is that the firewall or
IDS, as well as any other resources, have not to be ad-
justed as the honeypot is outside the firewall and viewed
as any other machine on the external network. Running
a honeypot does therefore not increase the dangers for
the internal network nor does it introduce new risks.

The disadvantage of placing a honeypot in front of the
firewall is that internal attackers can not be located or
trapped that easy, especially if the firewall limits out-
bound traffic and therefore limits the traffic to the hon-
eypot. Placing a honeypot inside a DMZ (figure 4 hon-
eypot(2)) seems a good solution as long as the other
systems inside the DMZ can be secured against the hon-
eypot. Most DMZs are not fully accessible as only needed
services are allowed to pass the firewall. In such a case,
placing the honeypot in front of the firewall should be fa-
vored as opening all corresponding ports on the firewall
is too time consuming and risky.

A honeypot behind a firewall (figure 4 honeypot(3))
can introduce new security risks to the internal network,
especially if the internal network is not secured against
the honeypot through additional firewalls. This could be
a special problem if the IPs are used for authentication.
It is important to distinguish between a setup where the
firewall enables access to the honeypot or where access
from the Internet is denied. A honeypot does often pro-
vide a lot of services. Probably most of them are not
used as exported services to the Internet and are there-
fore not forwarded to the honeypot by the firewall. By
placing the honeypot behind a firewall, it is inevitable
to adjust the firewall rules if access from the Internet
should be permitted. The biggest problem arises as soon
as the internal honeypot is compromised by an external
attacker. He gains the possibility to access the inter-
nal network through the honeypot. This traffic will be
unstopped by the firewall as it is regarded as traffic to
the honeypot only, which in turn is granted. Securing
an internal honeypot is therefore mandatory, especially
if it is a high-involvement honeypot. With an internal
honeypot it is also possible to detect a misconfigured fire-
wall which forwards unwanted traffic from the Internet
to the internal network. The main reason for placing a
honeypot behind a firewall could be to detect internal
attackers.

The best solution would be to run a honeypot in its
own DMZ, therefore with a preliminary firewall. The
firewall could be connected directly to the Internet or
intranet, depending on the goal. This attempt enables
tight control as well as a flexible environment with max-
imal security.

4.2.2 Honeynets

A honeypot is physically a single machine, probably run-
ning multiple virtual operating systems. Controlling out-
bound traffic is often not possible, as the traffic goes di-
rectly onto the network. In this case the only possibility
to limit outbound traffic is to use a preliminary firewall.
Such a more complex environment is often referenced as
honeynet. A typical honeynet consists of multiple hon-
eypots and a firewall (or firewalled-bridge) to limit and
log network traffic. An IDS is often used to watch for
potential attacks and decode and store network traffic
on the preliminary system.

Figure 5: Different honeypot topologies: Simple honey-
pot, honeynet and a virtual honeynet

By placing a firewall in front of a honeypot (or mul-
tiple honeypots) the risk based on the honeypot can be
reduced. It is possible to control the network flow, the
inbound as well as the outbound connections. Logging
of network traffic is much easier as this can be done on
one centralized location for all honeypots. The captured
data does not have to be placed on the honeypot itself
and the risk of detecting this data by an attacker is elim-
inated.

By introducing new machines to the honeypot itself,
more hardware is required. A solution with only one ma-
chine is thinkable. By using VMWare, setting up multi-
ple virtual systems on one physical machine is possible.
Through this attempt, it is even possible to place the fire-
wall on the same machine as all virtual honeypots how-
ever the security of this solution isn’t as good as having
different physical machines. As soon as the honeynet is
a virtual environment, the system could be compromised
and the attacker could be able to break out of the virtual
machines. Placing a bridge with firewall capabilities in
front of a honeypot is much safer as the attacker can not
see the bridge. Even attacking the bridge is not possible
as the bridge has no IP address and therefore no attack
point exists.

Introducing additional hardware also raises the com-
plexity of the environment. Understanding networking
and associated tools is important as long as the best se-
curity has to be provided.

4.3 Host based Information Gathering

This section will discuss possibilities that offer gain of
information about ongoings on a honeypot by installing

5

information gathering mechanisms on the honeypot it-
self.

4.3.1 Basic Possibilities

Information gathering facilities can basically be grouped
into two categories: facilities that generate streams of in-
formation (e.g. all keystrokes of an attacker on a honey-
pot) and facilities that offer the administrator to ”peek”
into the system and get information about a certain state
of the honeypot (e.g. getting the current processor usage
or a list of current processes).

Once again differentiating between systems using vir-
tualization and systems that do not is necessary. If no
virtualization is used, there is always the danger that an
attacker can discover modifications of the system. He
could be able to circumvent them or even make abusive
use of them (e.g. by flooding a logging mechanism until
it refuses to work properly). Therefore, special care has
to be taken when modified elements are visible and also
accessible by an attacker.

Figure 6: Different attempts of logging information on a
honeypot

When using facilities that generate streams of data
(and especially if no virtualization is used), the ques-
tion arises on where to store this data. One possibility
is to store this data on the honeypot itself, for instance
on a hidden partition in raw format, where it can be
studied later. The disadvantage is that this data can
not immediately be studied by the administrator (un-
less one implements some sort of ”peeking” mechanism
to allow remote viewing of the logged data - but with
every added modification to the system chances that an
attacker discovers the existence of a honeypot increase).
Another problem with locally logged data is that one
could run out of reserved log space - resulting in a re-
duced or even non monitored system. The attacker also
could get aware of this log area and try to manipulate
it. It does not matter how the attacker manipulates the
data, either by deleting or changing, the result in any

case is a non-trustable logfile. As a conclusion, it can
be stated that local stored log data cannot be trusted, it
gives just hints about the possible actions of an attacker.

Information about an attacker which is stored in a safe
(meaning the attacker cannot access it), remote place is
much more trustable. Of course, the attacker has still
the possibility to generate ”false” log data (or to stop
the log process at all) if he discovers the logging mecha-
nism, but he will not be able to delete events if the data
has once left the honeypot. The storage of continuous
data to remote places can be accomplished by using se-
rial cables, parallel cables (e.g. in the simplest form by
using direct printer output, but a printed log file could
be rather hard to analyze), USB or Firewire technology
and network interfaces (for instance by sending a stream
of UDP packets over an ethernet adaptor to a remote log
machine). One could also think of special logging hard-
ware, for instance a specialized PCI card, although such
solutions are not readily available.

The implementation of ”peeking” mechanisms into a
honeypot is regarded as more difficult, since if no vir-
tualization techniques are used and no special monitor
hardware is available, some kind of two-way communi-
cation is needed. As carrier for the communication the
same physical connection methods as stated above could
be used.

4.3.2 Microsoft Windows

One could think that the large amount of observed at-
tacks on systems running Microsoft Windows8 operating
systems makes them ideal for a honeypot (and especially
for data gathering), but unfortunately the structure of
these operating systems makes data gathering (at least
host based) rather difficult.

Until today the source code of the Windows operating
systems is not freely available, which means that changes
to the operating system are very hard (if not impossible)
to achieve. The modifications can therefore not be made
in a transparent way, logging functionality must be in-
tegrated into user space programs which are visible to
the attackers. The integration of data gathering mech-
anisms into loadable kernel drivers could possibly be a
better solution.

Logging the list of running processes, periodically
watching the event log and checking the integrity of the
system files by using MD-59 sums seems to be the only
relevant amongst the possible actions of a honeypot ad-
ministrator.

4.3.3 UNIX derivatives

UNIX10 derivated operating systems offer interesting op-
portunities for deploying data gathering mechanisms,

8Windows is a registered trademark of Microsoft corporation
9MD-5 is a message digest algorithm invented by Ronald

L. Rivest, it is primarly used to verify data integrity.
http://theory.lcs.mit.edu/∼rivest/homepage.html

10A registered trademark of The Open Group

6

since all (or at least in many cases most) of their compo-
nents are available as source code. The presence of avail-
able source code comes in very handy, offering the pos-
sibility to apply logging mechanisms to the source code,
recompile the binaries and copy them to the honeypot.
But one has to be careful with this method. Although
modified binaries are rather hard to detect for an at-
tacker, it is not impossible. There are ways an advanced
attacker could detect changed (often called ”patched”)
system binaries:

• MD-5 Checksums: If the attacker has a reference
system which he can compare to the honeypot, then
he is able to measure the difference between the ref-
erence system and the honeypot, for instance by cal-
culating MD-5 checksums over all standard system
binaries.

• Library dependency checks: Even if the attacker
does not know how the exact structure of the orig-
inal binaries looks, he can still use the unix ”ldd”
command to watch for strange shared library de-
pendencies. If, for example, the unix binary ”grep”
(used for text searching) suddenly has a dependency
on a function to communicate to the syslog daemon
(a program to log system events), the attacker will
get suspicious. A possible solution to this problem
is the usage of statically linked libraries.

• Trussing processes: In UNIX operating systems,
the super-user can supervise any process (especially
the invoked system calls by a process) with the truss
or strace command. If a binary like the ”grep” com-
mand suddenly starts communicating with other
processes (for example the syslog daemon), the at-
tacker would know that something is ”fishy” with
the attacked system.

Most attackers install so-called ”rootkits” upon the
overtake of a machine. These rootkits often include pre-
compiled system binaries, which are then copied over the
existing binaries on the compromised system. In conse-
quence of this, the achieved level of data gathering can
be reduced or even be set to zero at all. There are basi-
cally two ways to circumvent that problem: on one hand
as many system binaries as possible can be ”patched” (in
the hope that the attacker will not overwrite all patched
binaries, therefore having at least some data about the
attacker) or integrating the data gathering directly into
the UNIX-kernel, where it is really hard to detect for an
attacker.

Modifying UNIX kernels is not as easy as modify-
ing UNIX system binaries, most notably because not all
UNIX versions come along with a kernel in source code
form. But when the source is available, this can be a
very effective way to implement and hide data gathering
measures. Of course, this effort can be undone by an
advanced attacker by installing a fresh kernel.

Newer versions of UNIX systems use modular kernels,
giving the user the possibility to add new functionality

to the kernel during run-time. This can be a dangerous
feature, since it allows an attacker to add special coun-
termeasures directly into the kernel, e.g. a facility to
hide installed files (or processes) by the attacker from
other users.

4.4 Network based Information Gather-
ing

Host based information gathering is always located at the
host itself and is therefore vulnerable to detection and
once detected it can also be disabled. Network based
information gathering does not have to be located on
the honeypot itself. It can also be implemented in an
invisible way, as network traffic only gets analyzed but
not manipulated. Network based information gathering
is safer as it is harder to detect and quite impossible to
disable (if securely implemented).

How can information be gathered?
Suppose we do run a honeynet as in Figure 7. In this
scenario we have a preliminary firewall through which
all traffic must go. Some information can be gathered by
the firewall itself. The firewall can be configured in such
a way, that certain packets or all packets are logged. An
even better and more flexible solution would be to install
an intrusion detection system. With the help of an IDS,
detecting suspicious traffic is easy. Most IDS systems
can be configured to log interesting sessions to separate
files. Some protocols11 can be decoded and logged in
clear text which simplifies forensics a lot.

Figure 7: A simple honeynet with a preliminary firewall

By applying special filters, gathering of login and pass-
words for multiple services as FTP, POP3 and Telnet is
easily achieved.

Logging all network traffic can also have a big advan-
tage. By logging all traffic via tcpdump12 for example,
all TCP sessions can be reconstructed at a later time
and analyzed in more detail. Analyzing important or in-
teresting sequences can be done quite comfortably with

11As Telnet, FTP, SMTP or DNS queries
12Tool to collect and inspect network traffic.

7

Ethereal13. Anomalies in TCP/IP packets can be found
and possible reasons may be found. It is also important
to realize, that everything a hacker does on the com-
promised system has to go through the firewall and can
therefore be logged. Some actions may be placed on the
machine itself, but the command to start these actions
have to be in the log somewhere. A complete logging can
therefore be considered as a storybook of the attack.

As soon as the network traffic is encrypted, everything
is getting much harder and complicated. There are mul-
tiple attempts of solving the problems with encrypted
traffic. Some of them will be reviewed in detail in chap-
ter 4.4.3.

4.4.1 Firewall

This chapter will have a look at the possibilities for net-
work based information gathering at the firewall itself.

A firewall can be configured to log all traffic. This can
be very useful as all packets are available at a later time
for careful inspection. Logging the packets in a standard
file format which is widely used may be a big advantage
as multiple tools can be used to analyze and decode the
recorded traffic. On Linux based systems, logging the
traffic in a tcpdump compatible format seems a good
solution as multiple tools for analyzing these streams are
available.

A firewall can also be useful to trigger an alert as soon
as a packet is destined for the honeynet. These alerts
can be further refined to provide a sophisticated alerting
system which can tell which service has been attacked.

A firewall is also a good place to run some statistics.
All incoming packets can be counted as well as the out-
going ones. It could be interesting to see the emerging
network traffic as an attack is under way.

4.4.2 IDS

A network intrusion detection system can be used to trig-
ger alerts as soon as an attack takes place or has taken
place. By configuring an IDS in a way that only alerts
for running services are triggered a quite reliable warn-
ing system can be constructed. Having such a system is
very versatile as watching the honeynet all the time is
costly. Having an IDS helps minimizing the surveillance.
To abandon surveillance completely would be a wrong
approach. An IDS is based on signatures or anomalies.
Both methods can fail to detect an attack. If the attack
is very new there will not be any signature available.
As long as there are no anomalies about the attack, an
anomaly based IDS won’t trigger any alerts. It could
also be that an attacker can in what way ever guess a
Telnet login and password in the first or second attempt.
If the level for triggering an alert on the IDS is too high
this login would pass the IDS undetected.

Some IDS also have the possibility to log separate TCP
sessions to different files. By decoding them right away,

13Ethereal is a tool to analyze network traffic.

analyzing these sessions is quite comfortable. By gen-
erating a file for each session, most interesting sessions
can be found easily by looking at the file size as these
sessions tend to be larger than an unsuccessful hacking
attempt.

4.4.3 Encrypted Connections

Encrypted connections are considered to be safe and were
introduced to stop people from intercepting and sniffing
traffic. Unfortunately this is exactly what is intended to
be done at a preliminary bridge and can not be done any-
more with encrypted connections. By using encrypted
connections, listening on the wire and logging is still pos-
sible but does not make much sense as the captured pack-
ets can not be interpreted as their payload is encrypted.

In most cases, a host based information gathering fa-
cility is present and can log all actions. However, as soon
as the attacker detects the local logging mechanism he
can shut down the required resources. It would be nice
to have a secondary mechanism to be prepared for such
an event.

Several approaches exist on solving the problem with
encrypted connections.

• Man in the middle attack

• Brute force decryption

• Modified sshd daemons

• Customized kernel

Modifying the sshd daemon in a way that all decrypted
data is logged to a file is certainly the simplest solution.
However this attempt fails as soon as an attacker installs
his own ssh daemon. Customizing the kernel seems far
more advanced. It would be possible to modify the pty
device to log all keystrokes to a file or to the serial port.

Man in the middle attacks are possible, but not as
easy. Especially, a way has to be found to detect new ssh
daemons listening on new ports and generate an inter-
mediate. Brute force attacks on the encryption are not
practicable as they need too much computing resources
and time.

4.5 Active Information Gathering

Gathering information on a honeypot is mostly passive.
Information is gathered out of the network stream or the
bits and bytes on the machine itself. No information is
retrieved by inquiring third parties for specific informa-
tion about a certain identity.

But information gathering does not only have to be
passive. It is possible to get more information about a
person, an IP address or an attack by querying specific
services or machines. This can be very powerful as valu-
able information can be found. However this attempt
is also dangerous as the attacker could take notice and
vanish.

The following services are available:

8

• whois

• fingerprinting network traffic

• portscan

• finger

Some of this methods can be detected by the attacker
and are therefore a little bit more dangerous than others.

4.6 Dangers

Running a honeypot or honeynet is not something that
should be underestimated - there are some dangers one
must be aware of which basically are:

• Unnoticed takeover of the honeypot by an attacker

• Lost control over the honeypot installation

• Damage done to third parties

Unnoticed takeover of a honeypot is surely a bad thing
which has to be avoided in any case - otherwise the ben-
efits of a honeypot could be rather questionable. If there
is the possibility an attacker can infiltrate the system
without being noticed by the operator then there is ob-
viously a flaw in the design of the honeypot monitoring.

The loss of control over the honeypot and the attacker
is also a serious issue. A honeypot should be designed in
a way that the operator can on one hand safely disrupt
any communications from the honeypot with its environ-
ment and on the other hand do backups of system states
at any time for later investigation. The operator should
never rely on any machine correlated with the honeypot
- any administrative action must be applicable even if
the honeypot is under total control by an attacker. In
this context one has to point out the possible dangers of
virtual machines. It is never guaranteed that the virtu-
alization software is perfect and the attacker has no way
to break out from the virtual machine into the host oper-
ating system. The host operating system of a virtualized
honeypot is therefore not trustworthy and relying on its
proper functioning should be avoided.

Another aspect of loosing control is the deception of
the operator by an attacker. If an attacker generates that
much traffic and unfiltered log events that the operator
is not able to keep track of all the ongoings, the attacker
has good chances that the real purpose of his attack is
never discovered.

Damage done to third parties can have a very high
price. Legal consequences (above all, paying compensa-
tion) are not desirable. Assuring by all means that third
parties are not caused any harm should have high pri-
ority. Being very careful with all the possible aspects
of damage done to others is important. This does not
only consist of direct attacks (like DDoS14 attacks or
takeovers of machines initiated from a honeypot), but
also infringes of copyrights can be taken into this cate-
gory. A honeypot which is used by an attacker as a MP3

14Distributed denial of service

server can lead to ungracious acquaintance with certain
worldwide conglomerates.

Generally it can be said that the operator of a hon-
eypot has a heavy responsibility. He must be very at-
tentive, which is not easily achieved, particularly if a
honeypot is running for a long time.

4.7 Protecting Third Parties

A goal of every honeypot is getting compromised. As
soon as an attacker has invaded a system he can begin
using the system for his own purposes. The actions which
the attacker will take are unpredictable. Protecting third
parties as well as own resources must be of high priority.
Protecting own resources is normally easier to achieve,
as it can be influenced by the placement of the honeypot
itself. By having this system running on a non trusted
network segment, the impact can be reduced.

Protecting third parties can be more difficult because a
honeypot needs to interact with the global network to be
attractive and to return some useful information. This
fact alone should not lead to a totally open honeypot, as
such a resource will be a powerful weapon in the hands
of the blackhat community. Denying all outgoing traffic
is also not a way to go as such a setup would not be of
much interest for an attacker. Finding a good balance
between these two extremes is difficult to achieve.

The obvious solution to manage outbound connections
is to use a firewall (packet filter). This makes it possible
to set certain limits for outbound connections.

• Allow only a certain amount of IP packets in a given
time interval

• Allow only limited amount of TCP SYN packets in
a given time interval

• Allow only limited simultaneous TCP connections

• Drop outgoing IP packets randomly

Implementing such firewall rules makes it possible to
allow outbound traffic and at the same time to reduce
the usefulness of the system for DoS attacks. It is also
thinkable to deny outbound traffic to certain destination
ports.

Another approach is to deploy an IDS based packet
filtering software that makes it possible to drop packets
which match specified signatures. The Hogwash15 packet
filter is an implementation of this concept, although it is
normally used to filter inbound traffic.

The problem which could arise is the loss of attrac-
tiveness of the honeypot. An attacker will not be able to
successfully launch any well known attacks against third
parties, which could affect his behavior significantly.

4.8 Limiting Risk

As each honeypot introduces a certain risk it is desirable
to reduce this risk as much as possible. First of all, the

15http://hogwash.sourceforge.net/

9

risk can effectively be reduced by choosing the honeypot
with the lowest security risk which is still suitable. A
high-involvement honeypot is not always needed. If a
company internal attacker needs to be found who probes
the internal network, a mid- or even low-involvement
honeypot may be sufficient.

Sometimes a high-involvement honeypot is needed be-
cause of its flexibility and provided features. As shown,
one of the best solutions to reduce the risk is to utilize a
firewalled honeynet instead of a single honeypot.

Triggered alarms should be immediately sent to a hon-
eypot administrator. IDS alerts which detect a possible
root exploit should be sent to the responsible person as
a pager notification so that immediate actions can take
place and the surveillance can be tightened.

The possibility to shutdown a honeypot should always
be present. As a last resort, shutting down a honeypot
which is getting out of hand is an effective approach to
stop all actions - attacks as well as information gather-
ing. Having a honeynet makes it even more handy as all
traffic can be blocked on the firewall. Inspecting and an-
alyzing a honeypot is then without risk and enabling the
whole system again can be done with a simple firewall
rule configuration.

Minimizing the risk is possible but not always easy as
additional hardware is needed or time expenses for the
implementation increase. Reducing the risk is needed
and should not be viewed as a minor matter.

4.9 Attractiveness

Being the owner of a honeypot can be an interesting ex-
perience, but what if the members of the blackhat com-
munity do not find their way to the honeypot or, even
more dramatically, are not interested in the honeypot
at all? In this section some possibilities to attract the
normally unwanted will be discussed.

Normally a honeypot is put into one network seg-
ment. But if an administrator has more than one net-
work segment at hand (for example a class B net and
a class C net, or a collection of non-connected class C
networks) then he can ”widen” the ”surface” of his hon-
eypot installation. A straight way would be to put one
or more honeypots into each segment, with the penalty
of increased administrative and monetary expenses. A
more advanced technique would be the installation of
IP-tunnels from different networks to a central honey-
pot installation. There are some considerable advantages
over a bunch of single honeypots. First, there is only one
honeypot installation to administrate. Second, often no
new machines must be installed in the monitored seg-
ments, since one can use existing computers to do the
tunneling. Third, new networks can easily be integrated
in the existent honeypot environment by just installing
a new tunnel.

Another approach to lure attackers is the offering of
interesting services on the honeypot. Of course the ques-
tion arises, what an interesting service is or what it
should look like. For instance, a so called ”script-kiddie”

will never bother about an open database port on a ma-
chine, the advanced attacker will notice that there is ob-
viously a database running and that the machine could
hold some interesting data about the company the net-
work belongs to.

5 Outlook

Honeypots are a new field in the sector of network se-
curity. Currently there is a lot of ongoing research and
discussions all around the world. Several companies have
already launched commercial products. A comparison
of available products showed that there are some us-
able low- to high-involvement honeypots on the market.
In the sector of research honeypots, self-made solutions
have to be developed as only these solutions can pro-
vide a certain amount of freedom and flexibility which
is needed to cover a wide range of possible attacks and
attackers. Each research honeypot normally has its own
goals or different emphasis on the subject. Developing a
self-made solution needs a good technical understanding
as well as a time intensive development phase.

A honeypot is a valuable resource, especially to col-
lect information about proceedings of attackers as well as
their deployed tools. No other mechanism is comparable
in the efficiency of a honeypot if gathering information
is a primary goal, especially if the tools an attacker uses
are of interest. But nevertheless, honeypots can not be
considered as a standard product with a fixed place in
every security aware environment as firewalls or intru-
sion detection systems are today. Installing and running
a honeypot is not just a matter of ”buy and go”. The in-
volved risk and need for tight supervision as well as time
intensive analysis makes them difficult to use. Honey-
pots are in their’s infancy and new ideas and technolo-
gies will surface in the next time. At the same time as
honeypots are getting more advanced, hackers will also
develop methods to detect such systems. A regular arms
race could start between the good guys and the blackhat
community.

References
[Amo99] Edward Amoroso. Intrusion Detection: An Introduction to

Internet Surveillance, Correlation, Trace Back, Traps and
Responses. Intrusion NetBooks, 1999.

[Mem01] Project Honeynet Members. Project Honeynet. Oct 2001.
http://project.honeynet.org.

[MS01] Patrick Mueller and Greg Shipley. Dragon Claws it’s
way to the top. Network Computing, Aug 2001.
http://www.networkcomputing.com/1217/1217f2.html.

[MSK00] Stuart McClure, Joel Scambray, and George Kurtz. Hack-
ing Exposed 2nd Edition. Computing McGraw-Hill, second
edition, 2000.

[Nor99] Stephen Northcutt. Network Intrusion Detection: An Anal-
ysis Handbook. New Riders Publishing, 1999.

[Spi01] Lance Spitzner. Honeypots - Defini-
tions and Value of Honeypots. Oct 2001.
http://www.enteract.com/˜lspitz/honeypot.html.

10

